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Abstract

Measurement of treatment costs is important in the evaluation of medical interventions.
Accurate cost estimation is problematic, when cost records are incomplete. Methods from
the survival analysis literature have been proposed for estimating costs using available data.
In this article, we clarify assumptions necessary for validity of these techniques. We
demonstrate how assumptions needed for valid survival analysis may be violated when
these methods are applied to cost estimation. Our observations are confirmed through
simulations and empirical data analysis. We conclude that survival analysis approaches are
not generally appropriate for the analysis of medical costs and review several valid
alternatives. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

With the rapid escalation of the costs of medical treatment, interest in accu-
rately quantifying the cost of medical care has increased. Estimates from cost
studies are needed to determine the economic burden of disease, to predict the
economic consequences of new medical interventions, and for comparative pur-
poses such as cost-effectiveness analysis.

Many studies of medical costs focus on estimating the costs of care over a
specific time period such as an episode of illness or a lifetime after diagnosis of
disease. In these cases, costs may be thought of as accumulating over time prior to
a terminating event. If patients are not followed long enough to experience the
event while under observation, they are said to be censored. Economists have
recently observed that censoring could lead to biased estimates of costs unless

Žappropriately accounted for in the analysis Dudley et al., 1983; Fenn et al., 1995,
.1996 .

Survival analysis is a body of techniques for analyzing lifetimes under censor-
ing. Survival analysis has a long history in economic as well as biomedical
application. In the area of labor economics, for example, employment durations

Žare treated as survival times and analyzed accordingly Heckman and Singer,
.1985; Kiefer, 1988; Lancaster, 1990 . Recently, survival analysis approaches have

been proposed for analyzing medical costs. In the survival analysis approach to
cost data, individuals’ cumulative costs are treated like survival times and ana-

Ž .lyzed accordingly Dudley et al., 1983; Fenn et al., 1995, 1996 .
The survival analysis approach to costs seems appealing because of its simplic-

ity, its nonparametric nature, and its apparent robustness in the presence of
censoring. However, although the approach is apparently free from distributional
assumptions, it is not entirely assumption-free. In this article, we explain the
assumptions necessary for a survival analysis to be valid and show how they might
be violated when survival analysis is applied directly to possibly censored data on
cumulative costs. Using simulation modeling, we demonstrate the impact of the
violation of assumptions, first in the standard time domain and then in the cost
domain. Finally, we review some alternative, nonparametric methods that have
been developed, and show how the results of these methods differ from the results
of survival analysis in a real costs dataset.

2. Survival analysis

In this section we review the most commonly used survival analysis techniques
for estimating distributions of lifetimes and the association between lifetimes and
explanatory covariates. We illustrate concepts first in the time domain and then in
the costs domain.
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2.1. Censoring and failure

In classical survival analysis, interest focuses on the time to an event, most
commonly a failure of some sort. Examples include time to death, treatment

Ž .failure or relapse; Leung et al. 1997 cited some further public health examples.
Often it is not possible to observe all failures in the sample being studied,
especially if the study terminates after a fixed follow-up period. In clinical trials,
for example, patients who die within the follow-up period have a failure time
recorded; however, all that is known for those still alive at the end of the trial is
that their failure time is longer than their follow-up time. Such individuals are said
to be censored. Even though their data are effectively incomplete, estimation of
survival probabilities and comparative treatment effects can proceed under certain
assumptions. A key assumption is that of independent or noninformative censor-
ing, which means that censored individuals cannot constitute a particularly high or
low risk subgroup; rather they should be representative in terms of their risk of
failure. The goal of this article is to clearly demonstrate the role of this assumption
and to show how its violation can lead to biased estimates of survival and
covariate effects.

2.2. The Kaplan–Meier curÕe

Ž .The Kaplan–Meier estimator KM t estimates the probability that the time-to-
Ž .event or time-to-failure T exceeds any given value t Kaplan and Meier, 1958 . It

is typically plotted as a function of t over the range of times of interest and is a
decreasing curve with value 1 at time zero and other values given by:

KM t s 1yr , 1Ž . Ž .Ž .Ł si
i : s -ti

� 4where s ,s , . . . are the observed failure times and r is the estimated hazard or1 2 s

risk of failure at time s, among all individuals at risk of failure at time s.
Ž .From expression 1 , it is clear that the key to an unbiased Kaplan–Meier

estimator is an unbiased set of estimators of the hazards r at the observed failures

times. With censoring, some individuals may be lost to follow-up before a given
failure time s, in which case we cannot observe the complete at-risk population at
this time. In this situation, the survival analyst estimates the hazard of failure at
time s by the observed failure rate among those at risk and still under observation
at s. For this to be unbiased, the individuals at risk and still under observation at s
must be representative of the population at risk at s. Equivalently, the individuals
censored before s cannot be a selectively high or low risk subgroup. If high-risk
individuals tend to be censored, then those remaining will constitute a selective,
low-risk sample, fewer events than expected will occur, and the estimated hazard
will underestimate the true hazard. This is a case of dependent censoring; the
selective censoring effectively induces a correlation between the censoring and
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Ž .failure times. From Eq. 1 , it is clear that underestimating hazards will inflate the
Kaplan–Meier curve and lead to overestimation of survival. The reverse will occur
if low-risk individuals tend to be censored.

Dependent censoring will occur to some extent in practically any cost-to-event
Ž .analysis Hallstrom and Sullivan, 1997; Lin et al., 1997 . The problem arises

because individuals tend to accrue costs at different rates, with those in poorer
health using more resources and costing more per unit time. Consequently,
individuals censored with low costs will tend to be those accumulating costs
slowly, who in turn will tend to be those with lower costs-to-event. In practice the
correlation between cost at censoring and cost-to-event may not be so extreme as
to cause noticeable bias. However, although this correlation is unobservable, its
presence in a real application is evidenced by the example in the next section,
which shows inflation of the Kaplan–Meier curve. In theory, unless the mapping
from time t to cost accumulated by time t is one to one, some degree of bias is to
be expected. This can happen even if there is independent censoring on the time
scale.

Fig. 1 demonstrates the magnitude of the bias of the Kaplan–Meier method
applied to costs when individuals accumulate costs at different rates. The figure
represents a 5-year study, with continuous accrual during the follow-up period.
Thus, failure times and censoring times are completely independent on the interval
0 to 5 years. Patients accrue costs at a rate of US$1 per month or US$10 per
month, each with probability 0.5. Fig. 1a and b show that the Kaplan–Meier
method provides an excellent estimate of survival on the time scale, but that the
methodology applied to costs can lead to substantial overestimation. The degree of
bias is a function of the amount of censoring and the heterogeneity of the cost
accrual rates. For instance, if individuals accumulate costs at a rate of either US$1

Ž .or US$2 rather than US$10 per month, then the Kaplan–Meier estimate of the
cost-to-event distribution Fig. 1c shows only slight bias compared with Fig. 1b.
This is a result of the fact that the correlation between costs at censoring and costs
at failure is 0.56 in the example depicted by Fig. 1b and only 0.25 in Fig. 1c.

ŽA key feature of the previous example is that the maximum censoring time 5
.years is at least as large as the maximum failure time. In other words, the

follow-up period is sufficient to cover the entire range of possible failure times. In
practice, this is not always the case. For instance, the example in Section 2.3 has
just 7 years of cost data on ovarian cancer patients, who may well survive beyond
this time, particularly if their disease is localized at diagnosis. Section 3 presents
some alternatives to the Kaplan–Meier approach which are appropriate when
follow-up is not sufficient to cover the entire range of lifetimes.

2.3. Cox regression

Suppose now that rather than estimating the distribution of costs to an event,
the goal is actually to relate cost-at-event to covariates like health status or age; in
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Fig. 1. Kaplan–Meier estimation in a cost-to-event problem with independent censoring in time. Simulation of 1000 subjects with survival times distributed
uniformly between 1 and 60 months, and censoring times independent of survival and also distributed uniformly between 1 and 60 months. The solid curves

Ž .are estimates based on complete data, i.e., without censoring. The dashed curves are the estimates under censoring. a Kaplan–Meier estimate of the survival
Ž .distribution. b Kaplan–Meier estimate of the distribution of costs to event. Fifty percent of cases accrue costs at a rate of US$1 per month and the rest accrue

Ž .costs at a rate of US$10 per month. c Kaplan–Meier estimate of the distribution of costs to event. Fifty percent of cases accrue costs at a rate of US$1 per
month and the rest accrue costs at a rate of US$2 per month.
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essence to perform a regression of costs on a collection of independent variables
X. The most common regression approach used in time-to-event problems is Cox

Ž .regression Cox, 1972 .
The Cox model is a description of the dependence of the risk of failure at any

time t on the covariates X. It is semiparametric in that no assumptions are made
about how the hazard rates vary with time; however, the hazards for different
covariate values are assumed to be proportional with a ratio that is constant over
time.

Since classical Cox regression relates the hazard at each time t to covariates,
the model applied to costs relates the hazard at each cumulative cost c, to
covariates. For illustration, consider a binary covariate X taking values 0 and 1.
Suppose, for ease of discussion, that X is tumor stage at diagnosis in cancer
patients; Xs0 is localized and Xs1 is metastatic disease. Suppose that the
hazard for metastatic disease is a factor a times the hazard for localized disease.
The hazard ratio a is termed the ‘relative risk’. A relative risk of 2 in a cost
analysis would mean that for metastatic cases, the hazard at any cost c, in terms of
events per person-dollars at risk, is twice that for localized cases. This is not in
itself a useful quantity, although it indirectly addresses the questions that are
usually of interest in cost analyses so long as the Cox regression methodology is

Ž .valid. These include the following: 1 Overall, how do the costs for localized and
Ž .metastatic disease compare; 2 For a specific time-to-event, how do the costs

Ž .compare, and 3 What is an estimate of the marginal cost difference between the
two groups?

For Cox regression to be unbiased, independent censoring is required within
groups formed by each level of the covariate X so that individuals still under
observation are representative of the population at risk in each group, and
observed events occur at the correct rate within each group. If censoring is
dependent, the observed event rates in each group will be biased. If the dependent
censoring mechanism is the same for all levels of X, then the estimate of the
relative risk may still be unbiased; the errors caused by dependent censoring
within each group may, in a sense, cancel out. However, if, for example,
individuals at risk of failure are censored more often when Xs1, the observed
failure rate for this level of X will be correspondingly lower and as a result, the
relative risk a will be underestimated.

In practice, when using Cox regression for cost analysis, the accrual of costs at
different rates leads to dependent censoring within subgroups defined by covariate
levels. Covariates that affect the rate of cost accrual may lead to differential
dependent censoring across groups. To demonstrate the bias that can arise when
using Cox regression to analyze costs, we simulated a situation where for Xs0,
survival is exponential with mean 20 months, and costs accrue at a rate of either
US$1 or US$10 per month, each with probability 0.5. For Xs1, survival is
exponential with mean 10 months, and costs accrue at a rate of either US$2 or
US$20 per month, each with probability 0.5. This leads to a proportional hazards
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model in costs, with a true relative risk of 1.0, since the increased rate of cost
accrual is exactly balanced by the higher event rate when Xs1.

Assuming independent censoring in time with censoring times uniformly
distributed on the range 0 to 20 months, the mean estimated relative risk over 100
simulations with 500 subjects per group is 1.2 with a standard deviation of 0.1.
Thus, analysis of data from such a model would lead to the conclusion that the
costs are lower for Xs1, which is not the case.

In this example, the different rates of cost accrual in the two groups imply
differential dependent censoring in costs with independent censoring in time. A
confirmation of this is the observation that the correlation between the cost at
censoring and the cost at failure is higher in general for Xs1 than for Xs0.
Consequently, the relative risk estimate is biased. In practice, the degree of bias
will differ from one analysis to another, and will depend, among other things on
the amount of censoring and the differential in survival and rates of cost accrual in
the different groups. When comparing costs in two groups, bias will tend to be
greater when the Kaplan–Meier estimate is biased only for one group than when
the estimates for both groups are biased in the same direction. For example, bias
will occur when rates of cost accrual are highly variable in one group and less so
in the other.

Even if it is suspected that dependent censoring will not impact too severely on
the bias of the estimated relative risk, the proportional hazards assumption will not
in general be satisfied when costs are accruing at different rates. Consider a simple
model where, for low X, costs accumulate at a rate of US$1 per month with
probability p, or 10 per month with probability 1yp. Suppose that survival is
exponential with mean m. Two natural models for the costs at high X might be
either a different value of p or a different mean survival m, neither of which leads

Ž .to proportional hazards in costs see Appendix A . In the simulated example, the
only way to achieve proportional hazards was to keep p constant at both levels of
X, and to vary m and the rates of cost accrual together in a highly specific manner.
We conclude that the appropriateness of the proportional hazards assumption
would appear to be questionable in data sets where rates of cost accumulation vary
among individuals.

3. Alternative approaches

In this section, we review a number of alternative approaches for estimating the
distribution or mean of the costs to an event. We focus here on nonparametric

Ž .approaches Etzioni et al., 1996; Lin et al., 1997 , since they are being proposed as
alternatives to survival analysis, itself nonparametric. Parametric approaches to
costs analysis have recognized limitations due to the frequent skewness of medical
cost data and the presence of substantial numbers of observations with zero costs
Ž .Duan, 1983; Duan et al., 1983 . Recent approaches to modeling survival simulta-
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neously with a repeated measures process may have application to the modeling of
medical costs over time, but these approaches tend to be parametrically based.

ŽExamples include modeling survival and CD4 counts Wulfsohn and Tsiatis,
. Ž1997 , as well as survival and hospitalization in AIDS patients Lancaster and

.Intrator, 1998 .
If the individual cost histories in terms of costs per unit time have been

recorded, then an estimator of the mean cost-to-event is:

ˆM s S c , 2Ž .ˆÝ1 i i
i

ˆwhere S denotes the estimated survival probability and c , is the average costˆi i

incurred among patients surviving to time period i. An alternative is:

ˆM s s C , 3Ž .ˆÝ2 i i
i

ˆwhere s is the estimated probability of the event occurring in time period i and Cî i

is the average cumulative cost among patients experiencing the event in time
period i. This approach can be used if the cost histories have not been recorded. It
has the disadvantage that incomplete cost histories, like those from censored
individuals, cannot be used for estimation purposes unless further assumptions are
made. However, in contrast to M , it is applicable if the distribution of the costs to1

an event is required, in which case the cumulative distribution function of the
cost-to-event C is estimated by:

ˆ ˆP CFc s s P C Fc . 4Ž . Ž . Ž .ˆÝ i i
i

ˆŽ . Ž .In Eq. 4 , P C Fc is the cumulative distribution function of the costs amongi

individuals who experience the event in time period i.
When there is no censoring, M and M are identical; this can be easily seen1 2

by constructing a table in which the rows represent individuals and the columns
the costs per unit time. M is then obtained by constructing an appropriately1

weighted sum of the column totals and M by a weighted sum of the row totals.2
ŽBoth M and M have previously been used in the costs literature Keeler et1 2

.al., 1989; Hodgson, 1992; Riley et al., 1995 . Unlike the Kaplan–Meier approach,
they are appropriate when follow-up does not cover the entire range of failure
times, in which case they have somewhat different interpretations. Suppose cost
and survival data are only available for up to I months. Then, M estimates the1

average cost of care for all individuals including survivors over I months, with
individuals dying before I contributing their costs until death and individuals alive
at I contributing their cumulative costs until this time. In contrast, M estimates2

the average cost of care among individuals who die within I months. Similarly to
Ž .M , expression 4 estimates the distribution function of the cumulative costs of2
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care among individuals who die within I months. 1 A version of M that yields2

the same interpretation as M is available in this case, and is given by:1

I

ˆ ˆM s s C qS c , 5Ž .ˆ ˆÝ3 i i I I
is1

ˆwhere S is the estimated probability of surviving beyond time period I, and c isˆI I

the average cost until time I among individuals surviving beyond this time. Thus,
like M , this version of M requires the individual cost histories to be recorded.1 2

Ž .Lin et al. 1997 present a detailed simulation-based analysis of the relative
performance of M and M under both light and moderate censoring; both1 3

estimators are seen to be far more accurate than the estimate based on the
Kaplan–Meier approach.

Standard error expressions are available for the alternative estimators M , M ,1 2
Ž . Ž .and M Lin et al., 1997 . Lin et al. 1997 also prove that the estimators are3

asymptotically consistent and normally distributed; these results can be used for
inference and are useful when comparisons of expected costs are required. Indeed,

Ž .the results of Lin et al. 1997 allow mean costs at different levels of categorical
covariates to be compared; this methodology therefore provides a valid alternative
to the use of Cox regression in many cases.

Since both M , M and M use separate estimates of costs and survival, they1 2 3

provide the researcher with the opportunity to use different data sources to
estimate each of these quantities. This may be of value, especially if costs have
been recorded on a relatively small sample of patients or over a short period of
calendar time, but survival is available for a much larger sample and a longer
observation period, as in disease registry data. So long as both data sources are
reasonably comparable, the survival estimates from the larger data source may be

Ž .used Etzioni et al., 1996; Ramsey et al., 1997 .
The problems of modeling quality-adjusted survival distributions and estimating

Ž .expected quality-adjusted life years QALY’s are analogous to the cost modeling
Ž .problems discussed in this article Glasziou et al., 1990 . Therefore, methods valid

for estimating expected QALY’s may be applied directly to the estimation of
expected costs under censoring. In quality-adjusted survival analysis, each time
period spent alive is associated with a utility, that is, a measure of quality that
ranges between zero and one, with a value of one representing perfect health and
zero being equivalent to death. A utility in quality-adjusted survival analysis is
analogous to a cost per time period in cost analysis. An individual’s quality-ad-
justed survival is the integral of his utility curve over his survival time. In discrete

1 Ž . Ž .In this case, the failure probabilities s in expressions 3 and 4 should be replaced byî
ˆŽ .s r 1yS , i.e., the probability of failing in time period i conditional on failure during or before timeî I

period I.
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time, this translates into a cumulative sum of utilities that is exactly analogous to
the notion of a cumulative cost of care.

ŽA recent addition to the literature on quality-adjusted survival Zhao and
.Tsiatis, 1997 provides a useful alternative to cost distribution estimates based on

Ž .Eq. 4 . The new approach draws upon the literature on statistical analysis with
missing data and yields an estimator of the quality-adjusted survival that provides
a distributional extension of M . Thus, if the maximum follow-up time I is1

insufficient to cover the entire range of survival times, the estimator is inter-
pretable as an estimate of the distribution of cumulative costs until death or the
maximum follow-up, which ever comes first.

4. Example

To illustrate the differences between the Kaplan–Meier and alternative ap-
proaches to estimating the distribution of costs-to-event, we analyzed a subset of

Ž . Ž .the ovarian cancer data, presented in Etzioni et al. 1996 and Lin et al. 1997 .
The original dataset consisted of monthly Medicare reimbursements from 1984

Fig. 2. Kaplan–Meier and two alternative estimators of the distribution of lifetime costs among 600
regional stage ovarian cancer patients diagnosed between 1984 and 1990 inclusive and dying within
this time. An independent censoring distribution has been imposed on the survival times. The curve

Ž .labelled ‘Alternative’ is based on expression 4 ; the curve labelled ‘Zhao and Tsiatis’ is based on Zhao
Ž .and Tsiatis 1997 .
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through 1990 for 5012 Medicare beneficiaries diagnosed with ovarian cancer
between 1973 and 1990 inclusive. The source of the data was the linked

Ž .SEER–Medicare database Potosky et al., 1993 . In this analysis we used only the
records on 600 regional stage ovarian cancer patients diagnosed on or after
January 1984, and dying before the end of 1990, that is, those regional cases with
complete cost information from the time of diagnosis. We imposed independent
censoring on these individuals according to an exponential distribution with mean
24 months. This led to a sample with approximately 39% of individuals censored
and a censoring distribution that covered the entire range of possible failure times.
This latter condition was important to ensure the comparability of the various
estimates, since they have different interpretations otherwise. We used the com-
plete data to compute the true distribution function of lifetime costs which we then
compared with the various estimates discussed in this article.

Fig. 2 plots the true distribution function of the lifetime costs of care together
with the Kaplan–Meier estimate and the alternative estimates based on expression
Ž . Ž .4 and Zhao and Tsiatis 1997 . The Kaplan–Meier estimate is seen to overesti-
mate the true distribution of lifetime costs as expected, although the magnitude of
the bias is not as severe as might be expected. This is probably due to the fact that

Fig. 3. Kaplan–Meier and two alternative estimators of the distribution of lifetime costs among 831
regional stage ovarian cancer patients diagnosed between 1984 and 1990 inclusive. The curve labelled

Ž .‘Alternative’ is based on expression 4 ; the curve labelled ‘Zhao and Tsiatis’ is based on Zhao and
Ž .Tsiatis 1997 .
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exclusion of regional stage cases surviving beyond 7 years leaves a sample of
cases with costs that are relatively homogeneous in terms of their rates of accrual
over time. However, leaving the surviving cases in the sample would have led to
estimators that are not in fact comparable. As expected, the alternative estimates
show noticeably less bias than the Kaplan–Meier approach.

To examine the differences between the estimation approaches in a situation
where survival could exceed the maximum follow-up, we analyzed the full set of
831 regional stage cases diagnosed on or after January 1984. Of these, 231 were
alive at the end of follow-up. Fig. 3 shows that the different approaches yield quite
different results in this case, but this is due more to the fact that they are
estimating different quantities than to any bias considerations. The estimator
labelled ‘alternative’ represents the distributional extension of M and suggests2

higher costs than the others because it is indicative of the distribution of costs
among individuals dying within 7 years. The Zhao and Tsiatis estimator estimates
the distribution of 7-year costs, with individuals dying before 7 years contributing
their costs until death, and those alive for the full 7 years their cumulative costs
over this period. The Kaplan–Meier curve does not, as already noted, represent the
distribution of lifetime costs, since the lifetimes are restricted to those deaths
occurring within 7 years whereas no such restriction exists among censored
observations. What the Kaplan–Meier curve does estimate in this case is difficult
to say.

5. Discussion

The methodological issues that arise in the economic evaluation of medical care
are many, but three issues have been a particular focus for analysts in recent years.
The first is that medical care costs accrue unevenly over time for most individuals.
In particular, time periods of months or years can pass between times at which
health care costs are incurred. In databases that track health utilization over time
for populations, this is manifested as a ‘0–1’ problem: for most months, no health
care costs accrue for the majority of the observed population. Second, in most
situations, medical care costs for a given population are not normally distributed: a
minority of individuals incur disproportionately high medical care costs compared
to the rest of the population. Economists have traditionally relied on multi-part

Žmodeling and semiparametric techniques to address these issues Duan, 1983;
.Duan et al., 1983 . Finally, the issue of censoring has recently been raised in the

Žcontext of economic analysis along side clinical trials, Dudley et al., 1983;
.Quesenberry et al., 1989; Fenn et al., 1995 although in fact, problems created by

censoring are also present in most retrospective analyses of population cost data
Ž .Medicare records, for example . Certainly, the analytical problems created by
databases with a large mass of observations at zero, skewedness of cost distribu-
tions, and censoring have challenged those who wish to conduct hypothesis tests
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of economic data in such settings as retrospective cost analyses and cost-effective-
Ž .ness analyses conducted alongside clinical trials Rutten-van Molken et al., 1994 .

At first glance, survival analysis seems to be an appealing approach for
addressing the issues raised above. Not only is survival analysis appropriate for
censored data, but it also easily accommodates a variety of distributional forms. In
this article, we have demonstrated the pitfalls of applying survival analysis
techniques to cost estimation. The first issue is the real possibility of dependent
censoring, which can inflate Kaplan–Meier-derived cost estimates and bias the
coefficients in multivariate Cox regressions. A second problem is the difficulty of
interpreting Kaplan–Meier-derived cost estimates when survival exceeds the maxi-
mal censoring time. Finally, the fundamental proportional hazards assumption may
well be violated when Cox regression models are applied to medical cost data. All
of these issues raise the possibility that cost estimates will be biased when survival
analysis is used to analyze cost data. Although in practice, the bias may not be
severe, assessing its magnitude is at best difficult, if not impossible. We therefore
recommend against the use of these approaches in general.

We have outlined alternative ways to analyze costs when survival exceeds the
maximum censoring time. All have the advantage that they can accommodate
large masses of observations with zero costs and non-normal cost distributions.
Each yields estimates of average costs and standard errors, thus permitting
hypothesis testing of costs for alternative treatment arms in clinical trials. An
analog of Cox regression for relating costs to covariates is not, to our knowledge
available. This would seem to be an important area for future research. Finally, an
important and under-appreciated application of empirically derived cost estimates
from time-to-event studies is in estimating the numerator of the incremental

Ž .cost-effectiveness ICE ratio. Traditional ICE ratios involve point estimates of
costs according to various treatment groups, often derived from a nonstochastic
source. These point estimates and resultant incremental ratios require variance

Ž .estimates for analytic and hypothesis testing purpose O’Brien et al., 1994 . The
techniques presented in this paper allow for variance estimates of the incremental
cost values. Combined with variances on outcome data from traditional methods,
and statistical methods for computing the variance of cost-effectiveness ratio

Žestimates Wakker and Klaassen, 1995; Siegel et al., 1996; Willan and O’Brien,
.1996; Laska et al., 1997 , an ICE ratio with confidence intervals can now be

constructed for hypothesis testing.
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Appendix A

Illustration of the lack of validity of the proportional hazards assumption in a
simple model with costs accruing at different rates.

Assume a binary covariate X with a value of 0 or 1. Suppose that given Xsx,
Ž .survival is exponential with mean 1rl and costs accumulate at a rate of US$ax x

per month with probability p , and US$b per month with probability 1yp .x x x

We have the following model:

� 4f t sl exp yl t ;Ž .x x x

Ž .where t is survival time and f t is the probability density function of t givenx
Ž . Ž .Xsx. Denote an individual’s cost-to-event by c t . Then, c t sa t with proba-x

Ž .bility p and c t sb t with probability 1yp . The probability density functionx x x
Ž .of c t is

l yl l ylx x x x
f c t s exp t p q exp t 1yp ,Ž . Ž .Ž .x x x½ 5 ½ 5a a b bx x x x

and the survivor function is

yl ylx x
S c t s1yF c t sexp t p qexp t 1yp ,Ž . Ž . Ž .Ž . Ž .x x x x½ 5 ½ 5a bx x

Ž Ž .. Ž .where F c t is the cumulative distribution function of c t .x
Ž Ž .. Ž Ž ..The cost hazard given Xsx is the ratio of f c t to S c t , that is:x x

l yl l ylx x x x
exp t p q exp t 1ypŽ .x x½ 5 ½ 5a a b bx x x x

h c t sŽ .Ž .x yl ylx x
exp t p qexp t 1ypŽ .x x½ 5 ½ 5a bx x

and the ratio of the hazard when Xs1 to the hazard when Xs0 is:

l yl l yl1 1 1 1
exp t p q exp t 1ypŽ .1 1½ 5 ½ 5a a b b1 1 1 1

yl yl1 1
exp t p qexp t 1ypŽ .1 1½ 5 ½ 5a bh c tŽ .Ž . 1 11

s .
l yl l ylh c tŽ .Ž . 0 0 0 00 exp t p q exp t 1ypŽ .0 0½ 5 ½ 5a a b b0 0 0 0

yl yl0 0
exp t p qexp t 1ypŽ .0 0½ 5 ½ 5a b0 0

Therefore, for example, simply varying a , b , p or l individually between thex x x x

two groups will not lead to proportional hazards. Indeed, it is quite difficult to find
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settings for a , b , l and p that will lead to proportional hazards; the examplex x x x

in Section 2.3 varies l , a and b so that l ra sl ra and l rb sl rbx x x 0 0 1 1 0 0 1 1

while keeping p sp . To summarize, the heterogeneity of rate of cost accrual in1 0

the two groups leads to a costs variable that is a mixture of random variables. The
resulting probability density functions and hazards are complex and are not
necessarily proportional across groups with differing survival distributions or cost
accrual rates.
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