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SUMMARY. The field of survival analysis emerged in the 20th century and experienced tremendous growth
during the latter half of the century. The developments in this field that have had the most profound impact
on clinical trials are the Kaplan—-Meier (1958, Journal of the American Statistical Association 53, 457—481)
method for estimating the survival function, the log-rank statistic (Mantel, 1966, Cancer Chemotherapy
Report 50, 163-170) for comparing two survival distributions, and the Cox (1972, Journal of the Royal
Statistical Society, Series B 34, 187-220) proportional hazards model for quantifying the effects of covariates
on the survival time. The counting-process martingale theory pioneered by Aalen (1975, Statistical inference
for a family of counting processes, Ph.D. dissertation, University of California, Berkeley) provides a unified
framework for studying the small- and large-sample properties of survival analysis statistics. Significant
progress has been achieved and further developments are expected in many other areas, including the
accelerated failure time model, multivariate failure time data, interval-censored data, dependent censoring,
dynamic treatment regimes and causal inference, joint modeling of failure time and longitudinal data, and
Baysian methods.

KEY WORDS: Accelerated failure time model; Censoring; Competing risks; Counting process; Cox regres-
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1. Introduction

Enormous progress has been achieved in the development of
the science of clinical trials during the 20th century. In this
progress, methods have been developed, implemented, and
refined that enable the reliable, efficient, and ethical evalua-
tion of the benefits and risks of interventions that target the
treatment and prevention of human diseases. One of the most
important components of this development has been the for-
mulation of censored data survival analysis methods.

The primary outcome measure in a clinical trial designed
to provide a reliable assessment of benefit and risk often is
defined to be the time to occurrence of a clinically important
event, such as death, detection or progression of a disease, or
occurrence of a clinically significant morbid event such as a
serious infection, stroke, or major organ failure. A complexity
that frequently arises in trials having time-to-event endpoints
is that a substantial fraction of the trial participants remain
free of the study endpoint at the time of data analysis. The
patients who provide this incomplete outcome information are
referred to as being censored or, more precisely, right censored

since it is only known that the true time-to-event for that
participant exceeds the duration of follow-up.

The complexities provided by the presence of censored ob-
servations led to the development of a new field of statistical
methodology. Because the analysis of clinical trials data with
time-to-death outcomes provided the original motivation for
this new statistical methodology, the field has become known
as survival analysis. The methodological developments in this
field, largely achieved in the latter half of the 20th century, in
turn have had an enormous impact on the science of clinical
trials.

The field of survival analysis is very rich. Thus, it is impos-
sible to provide a comprehensive review of all the important
developments in a single article, let alone to mention all the
researchers who have made significant contributions to the
field. This article provides an overview of some of the devel-
opments in survival analysis that we recognize to have been
particularly influential on the science of clinical trials. The
technical material will be kept to a minimum so that the ar-
ticle will be accessible to readers not specialized in survival
analysis.
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2. Notation and Identifiability

Let T denote the true time-to-event or failure time for a
study participant in a clinical trial. The participant’s time
0, i.e., where T' = 0, represents the time of initiation of their
follow-up in the clinical trial and is typically the time of ran-
domization in a comparative study. Primary interest usually
lies in estimation and testing regarding the distribution of 7'
This distribution can be characterized by the survival func-
tion S(¢) = Pr(T > ¢) for ¢ > 0. Because of censoring, it
is more convenient to deal with the hazard function. If T is
continuous with density function f, then the hazard function
is defined by

At) = lim Pr(t ST <+ A6 | T > )/ At = (6)/S().

The function A(t) = [§ M(u)du is called the cumulative hazard
function for T, and it is easily shown that S(¢) = e MY for
a continuous survival time T'.

Let U denote the censoring time, i.e., the time beyond
which the clinical trial participant cannot be observed. Then
(T, U) are referred to as latent data, while the observed data
are denoted by (X, d), where X = min(T,U), 6 = I(T < U),
and I(-) is the indicator function. The clinical trial partici-
pants having § = 0 are referred to as having censored obser-
vations.

While the distribution function S(t) can be consistently
estimated when data are uncensored, Tsiatis (1975) and Pe-
terson (1976) established that neither A(t) nor S(¢) is identi-
fiable or consistently estimable if one only observes (X, §). As
discussed by Fleming and Harrington (1991, Theorem 1.3.1),
observing (X, §) rather than T for all participants only allows
one to consistently estimate S* (t) = exp{— [{ \* (u)du} for
all ¢ such that Pr(X > ¢t) > 0, where

A (t) = AlitTOPr(t ST<t+At|T>tU>t)/At (2.1)

Chiang (1968) referred to A¥ (t) as the crude hazard and A(t)
as the net hazard. Therefore, in most survival analysis appli-
cations, a key assumption is made regarding the equality of
the crude hazard (that is estimable) and the net hazard (that
is of interest), i.e.,

A# (t) = A(¢) for all t such that Pr(X >¢) >0. (2.2)

A sufficient condition for the validity of assumption (2.2) is
the independence of T and U. Cox (1959), Mann, Schafer,
and Singpurwalla (1974), Gross and Clark (1975), and Cox
and Oakes (1984) provided further discussion.

An understanding about the mechanisms causing censoring
provides evidence about validity of assumption (2.2). For ex-
ample, if censoring is due to staggered entry (i.e., participants
are enrolled into the trial over a lengthy accrual period and
then followed to a common calendar date of analysis), 7" and
U will essentially be independent as long as characteristics of
participants that influence risk of events do not vary system-
atically over the period of accrual. In contrast, if censoring
occurs when patients become too ill to be readily followed or
if follow-up is stopped when participants are no longer com-
pliant with their study intervention, censorship can be highly
dependent, likely resulting in A% (t) < A(t). In such settings,
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statistical methods discussed in the next section that consis-
tently estimate S¥ (¢) would substantially overestimate the
true S(¢).

3. Estimation of the Hazard and Survival Functions

The early efforts in development of survival analysis method-
ology were predominantly focused on estimation of the hazard
function A(t) and the survival function S(t). Some paramet-
ric models were proposed, with maximum likelihood methods
used for estimation of parameters, under the assumption of
independent censoring (Mann et al., 1974; Gross and Clark,
1975). For example, assuming a constant hazard function, i.e.,
A(t) = X for all ¢t > 0, one obtains the exponential distribu-
tion, where the maximum likelihood estimator for A is the
number of observed events divided by the summation of du-
ration of follow-up over all participants (Bartholomew, 1957).
Kalbfleisch and Prentice (1980) explored a four-parameter
generalized F' family that incorporates many well-known para-
metric distributions having increasing, decreasing, and non-
monotonic hazard functions. Among these distributions are
the exponential, Weibull, log-logistic, gamma, and log-normal
distributions. Lawless (1982) provided a detailed presentation
of parametric methods.

A class of actuarial estimators were proposed to provide
more robust estimation of S(t). Generally, piecewise paramet-
ric models were fit to the data, where typically either the haz-
ard function was assumed to be piecewise constant or the sur-
vival function was assumed to be piecewise linear. One would
then estimate Sy, the conditional probability of survival to
the end of the kth interval, given survival to the beginning of
that interval. Crowley (1970) provided an overview of these
estimators and explored their properties. The most widely
used actuarial estimator was obtained by estimating Sj with
Dy /(Yy, — Wy), where, in the kth interval, Dy is the number
of observed events, Y} is the number of participants at risk
at the beginning, and Wy, is the number of participants cen-
sored before an event. This was called the standard life table
estimator by Crowley (1970) and was proposed and initially
explored by Berkson and Gage (1950) and Cutler and Ederer
(1958). The variance for these actuarial estimators was usu-
ally obtained using the formula given by Greenwood (1926).

Nelson (1969) introduced hazard plotting based on his esti-
mator of the cumulative hazard function A(t). In the actuarial
estimation approach, as the mesh of the intervals approaches
zero, Nelson’s estimator is given by a step function, with steps
occurring at times of observed events and having size D/Y,
where D events occur among Y participants at risk. Later, Jo-
hansen (1983) derived the Nelson estimator as a generalized
maximum likelihood estimator.

Recognizing the relationship between S(t) and A(t) through
the differential equation —{dS(t)/d¢}/S(t—) = A(t), one mo-
tivates the relationship

—{A5(®)}/8(t-) = AA®),

where one estimates A(t) using Nelson’s estimator and then
recursively solves for the estimator of S(t). The resulting es-
timator is that proposed by Kaplan and Meier (1958). It is a
step function, with value reduced by the multiplicative factor
{1 - (D/N)} at times of observed events.

Crowley (1970) established that, as the mesh of the ac-
tuarial intervals converges to zero, the Kaplan—Meier esti-
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mator can be obtained as the exact limit of the standard
life table estimator and the limit of the order o(1/Yy) for
the other actuarial estimators. Kaplan and Meier (1958) had
derived their estimator through a nonparametric maximum
likelihood approach. Aalen (1975) established the estimator
to be uniformly strongly consistent for S(¢) under the as-
sumption that T is absolutely continuous and independent of
U. (It is strongly consistent for S¥(¢) whether or not inde-
pendence holds.) Breslow and Crowley (1974) established the
weak convergence of a standardized Kaplan—Meier estimator
process to a time-transformed Brownian motion process, and
Gill (1983) provided further development of the large-sample
properties. Efron (1967) considered a two-sample application
of the Kaplan—Meier estimator that he recognized to have a
self-consistency property. The optimality of the Kaplan—Meier
estimator was established by Wellner (1982).

4. Counting Processes and Survival Analysis, with
Application to the Nelson Estimator

In the mid-1970s, Aalen introduced an elegant martingale-
based approach to survival analysis, where statistical meth-
ods can be cast within a unifying counting process frame-
work (see Aalen, 1975). In this seminal work, the counting
process approach uses an integral representation for censored
data statistics that provides a simple unified form for estima-
tors, test statistics, and regression methods. These martingale
methods allow one to obtain simple expressions for moments
of complicated statistics and asymptotic distributions for test
statistics and estimators and to examine the operating char-
acteristics of censored data regression methods. Detailed pre-
sentation of this approach has been provided in textbooks by
Fleming and Harrington (1991) and Andersen et al. (1993).

In the counting process approach for analyzing data on
time-to-a-single-event, the data for the ith participant, (X;
d8;), is represented as {N;(t),Y;(¢)} (¢ > 0), where

Nz(t) =I(X; <t,6;=1) and Y;(¥) =I(X; > t). (4.1)

The right-continuous process N(t) is referred to as the count-
ing process since it essentially counts the number of events
observed up to and including time ¢, while the left-continuous
process Y (t) is referred to as the at-risk process, indicating
whether the participant is at risk at time ¢.

A simple yet important illustration of the counting process
approach is provided by examining the properties of the Nel-
son estimator A(t) of A(t). The hazard integrated over the
region in which one has data is

¢
A*(t) E/O H{Y (u) > 0}A(u)du,

where A}_’(t) = X, Y;(t) and n is the sample size. One can
write A(t) — A*(¢) in the form of

nooat
;Amwwmx

where H;(t) = I{Y (t) > 0}/Y (¢) is a left-continuous process
and

(4.2)

t
M@EM@—AE@WMU (4.3)
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is the participant-specific martingale (with respect to a proper
filtration). The martingale M; in (4.3) represents the differ-
ence over the interval (0,¢] between the observed number and
the model-predicted number of events for the ith participant.
The left-continuity (and hence predictableness) of the pro-
cess H; and the martingale property for M; renders the en-
tire expression in (4.2) to be a martingale transform. This
structure directly yields moments and large-sample proper-
ties. For example, since the martingale M; has expectation
zero, it follows that the Nelson estimator A(¢) has expecta-
tion [¢ Pr{¥ (u) > 0}\(u)du. This martingale-based approach
enables an elegant development of the small- and large-sample
properties of the Nelson and Kaplan—Meier estimators, as
shown by Gill (1980).

5. Two-Sample Statistics

The primary objective of many clinical trials is to provide a
reliable comparison of the efficacy and safety of two interven-
tions, where efficacy often is assessed in terms of a time-to-
event outcome measure. Therefore, two of the most important
achievements in the development of clinical trials methodol-
ogy have been the acceptance of the need for randomization
and the formulation of two-sample methods for comparing
survival distributions in censored data.

In the 1930s, Fisher (1935) advocated that individuals who
were eligible to participate in a clinical trial comparing two
regimens be assigned to these two groups in a random manner.
This process would eliminate the systematic occurrence of im-
balances between intervention groups in the characteristics of
study participants. In turn, the resulting lack of confounding
between interventions and the patient characteristics would
enable an unbiased evaluation of efficacy and safety, as long
as the outcome variables were assessed on all randomized par-
ticipants.

Maintaining the integrity of randomization in comparative
clinical trials having long-term clinical outcomes and only par-
tial follow-up on study participants as well as providing effi-
cient statistical methods motivated the development of two-
sample censored data statistics. A variety of parametric and
nonparametric two-sample statistics have been proposed to
assess observed differences in empirical survival curves. Para-
metric methods were described by Lawless (1982) and Kalb-
fleisch and Prentice (1980).

Two-sample censored-data linear rank statistics have pro-
vided a robust alternative to parametric methods. The most
widely used member of this class is the log-rank statistic. It
was originally proposed by Mantel (1966), who classified par-
ticipants at risk at the time of an event into a 2 x 2 table
according to event status (yes versus no) and intervention
group. He then obtained the numerator of the log-rank statis-
tic by computing the observed and the expected (conditioning
on the margins of the 2 x 2 table) events on the control arm
and by summing the differences of these over all distinct event
times. Within each 2 x 2 table, the variance of the number of
events on the control arm was obtained using the hypergeo-
metric distribution. These were then summed over all distinct
event times to provide the variance estimator for the log-rank
statistic.

Aalen (1978) recognized that a wide class of two-sample
statistics, including the log-rank statistic, could be written
as a martingale transform as formulated in equation (4.2)
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through proper choice of the left-continuous process H; and
where the sum over 7 would be taken over all participants in
the two samples. Using this structure, Gill (1980) established
several key properties of the log-rank statistic, including that
it has mean zero when survival distributions are equal, that
Mantel’s variance estimator is unbiased, and that the statistic
is asymptotically normal.

Gill (1980) introduced and explored a wide class of censored
data two-sample statistics, called statistics of the class K.
These are also called weighted log-rank statistics since any
member of this class can be written as a weighted sum of the
observed minus expected events in Mantel’s 2 x 2 tables. The
weight function is assumed to be a left-continuous (or, more
generally, a predictable) process.

Many censored data two-sample statistics fall within Gill’s
class K. Some of the well-known examples are the censored
data generalizations of the Wilcoxon statistic proposed by
Gehan (1965), Efron (1967), and Peto and Peto (1972), the
one-parameter class of statistics proposed by Tarone and Ware
(1977), the G family proposed by Harrington and Fleming
(1982), and its generalization, the G”*7 family, proposed by
Fleming and Harrington (1991).

The statistics of the class K can be formulated as in equa-
tion (4.2). Using this structure, Gill (1980) derived small- and
large-sample properties for statistics of this wide class. He de-
veloped criteria for consistency of these tests against ordered
hazards and stochastic ordering alternatives. He also provided
asymptotic distribution results, not only under the null hy-
pothesis of equality of survival distributions but also under
contiguous alternatives, allowing him to provide a characteri-
zation of the alternatives against which tests of the class K are
efficient. Among these results was a proof that the log-rank
statistic provides an efficient test under proportional hazards
alternatives.

The efficient score function can be used to construct effi-
cient rank tests for uncensored data (Héjek and Sidék, 1967).
Prentice (1978) adapted these statistics to the censored data
setting. Generally, these statistics either are of the class K or
are asymptotically equivalent to such statistics. The results
by Gill (1980), as well as work by Mehrotra, Michalek, and
Mihalko (1982), Cuzick (1985), and Struthers (1984), estab-
lish that Prentice’s adapted rank tests remain efficient in the
presence of censoring.

The martingale formulation in (4.2) allows for straightfor-
ward development of the joint distribution of several statistics
of the class K as well as supremum versions of such statistics.
Using this structure, the properties of procedures based on
clusters or supremum versions of statistics of the class K have
been explored by many authors, including Gill (1980), Flem-
ing et al. (1980), Fleming and Harrington (1981), Schumacher
(1984), and Fleming, Harrington, and O’Sullivan (1987).

The martingale formulation in (4.2) also enabled the de-
velopment of properties of weighted Kaplan—Meier statistics
(Pepe and Fleming, 1991). These statistics are based on the
integrated weighted difference in Kaplan—Meier estimators.
Being direct generalizations of the t-test to censored data,
they are sensitive against stochastic ordering alternatives.

6. Regression Models

In clinical trials designed to assess the effect of an interven-
tion on a time-to-event outcome, it is important to be able

Biometrics, December 2000

to explore or adjust for the effect of an array of other covari-
ates that may be associated with that outcome. Hence, the
information collected on each study participant is expanded
to be (N,Y,Z), where Z represents covariates. The covari-
ates are usually assessed at time of enrollment of a study
participant. They can be demographic variables, such as age,
gender, or race; laboratory measurements, such as levels of
bilirubin, blood pressure, or viral load; histologic assessments
based on biopsy; or other descriptive measurements such as
time from diagnosis of disease, type of disease, prior thera-
peutic exposures, or functional status of the participant. In
regression models, these covariates can take a variety of func-
tional forms, being dichotomous, discrete, or continuous. The
continuous variables may be transformations of original mea-
sures, such as the logarithm of bilirubin.

The linear regression model for survival time data takes the
form

logT =B'Z +e, (6.1)

where 3 is a set of unknown regression parameters and € is
an error variable independent of Z. The logarithmic transfor-
mation is employed because T is positive; other appropriate
transformations of 7' may also be selected. Exponentiation
of (6.1) yields T = &P /ZTO, where Ty = e°. This expression
shows that the role of Z is to accelerate (or decelerate) the
time to failure. Thus, (6.1) is referred to as the accelerated
failure time model.

Because of censoring, it is more convenient to model the
survival data through the hazard function. Let A(¢ | Z) denote
the hazard function associated with Z, i.e.,

At|Z) = lim Pr(t <T < t+ At |T > t,2)/At.
At]0

The proportional hazards model specifies that

At] Z) = Xo(t)eP Z, (6.2)

where A\g(¢) is the so-called baseline hazard function, i.e., the
hazard function under Z = 0, and 3 is a set of unknown re-
gression parameters. Under this model, the covariates have
multiplicative effects on the hazard function, and the regres-
sion parameters are interpreted as the logarithms of the haz-
ard ratios or relative risks. The simplest form of (6.2) in which
Ao(t) is a constant was first studied by Feigl and Zelen (1965).
Model (6.1) can be rewritten as

At Z)=Xo (te_ﬂlz) e_ﬁlz,

where Ag(t) is the hazard function of Tp. A comparison of
(6.3) with (6.2) reveals that the only overlap in the acceler-
ated failure time and proportional hazards models arises when
Ao(t) is Weibull (Kalbfleisch and Prentice, 1980, pp. 34-35).

In the regression setting, the independent censoring as-
sumption given by equation (2.2) is extended so that, con-
ditional on Z, the crude and net hazard functions are equal.
Survival models, such as (6.1) and (6.2), are referred to as
parametric models if the distributional form of the failure
time, i.e., Ao(t), is specified and as semiparametric models
otherwise. Analysis of parametric survival models has been
discussed by Kalbfleisch and Prentice (1980), Lawless (1982),
Cox and Oakes (1984), and Andersen et al. (1993). Due to the
complex nature of human diseases, it is difficult to specify the

(6.3)



Survival Analysis in Clinical Trials

parametric form. Thus, semiparametric models are preferable
to parametric models in most clinical applications.

7. Cox Proportional Hazards Model

In his seminal papers in 1972 and 1975, Cox introduced an
ingenious semiparametric approach to inference based on the
proportional hazards model. These methodological results are
among the developments in the field of survival analysis that
have had the most profound impact on clinical trials applica-
tions.

By fitting the proportional hazards model in equation (6.2)
with an unspecified baseline hazard function Ag(t), Cox ob-
tained a robust approach for studying the influence of covari-
ates on outcome. However, with an infinite-dimensional nui-
sance function \g(t), modifications to the classical likelihood
approach would be needed. Thus, Cox (1975) introduced the
partial likelihood, which is based on the data that does not
carry information about Ag(t). Specifically, Cox discarded the
times of observed events and the number of events at those
times. Assuming that censoring is independent and is uninfor-
mative for 3 (see Fleming and Harrington, 1991, Definition
4.3.1), he also discarded the censoring times and the iden-
tity of participants associated with the censored times. The
partial likelihood then was based on, for all event times, the
identity of the participant(s) failing at each event time, given
the number failing and the identity of the participants at risk
at that time. It takes the form

B'Z;)

e

o=l <%=

- ieD Z e”
JER:

(7.1)

where D is the set of indices of observed event times, Z ;) is
the covariate vector for the subject failing at the ith observed
event time Tio, and R; is the set of participants at risk at
Tio. The maximum partial likelihood estimator ,@ is the value
of B that maximizes L(8). Given B3, the cumulative baseline
hazard function Ag(t) = f§ Ao(u)du is estimated by

Ao )= Z

1

Bz’
ieD;T{’gtE e
JER:

(7.2)

Estimator (7.2) is commonly attributed to Breslow (1972,
1974).

Cox (1972, 1975) conjectured that L(3) shares the asymp-
totic properties of a full likelihood. A number of authors in-
vestigated the asymptotic properties of B and Ag(t). The
first published proof was provided by Tsiatis (1981). Other
proofs were given by Liu and Crowley (1978), Sen (1981), Naes
(1982), and Bailey (1983). Andersen and Gill (1982) provided
an elegant asymptotic theory for ,[:} and Ao(t) by observing
that the partial likelihood score function can be formulated
as a martingale transform of the form given in (4.2).

The relationship between partial likelihood inference in the
proportional hazards model and a marginal likelihood ap-
proach was discussed by Kalbfleisch and Prentice (1973), while
Jacobsen (1984) and Bailey (1979) discussed the relationship
with a generalized maximum likelihood approach. The effi-
ciency of 3 was studied by Efron (1977), Oakes (1977), and
Cox and Oakes (1984).
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One of the most important applications of the Cox propor-
tional hazards model in the setting of a randomized controlled
clinical trial is to obtain an adjustment of the estimator of
treatment effect. Including a strongly predictive covariate in
addition to the treatment variable in the regression model
provides three potential benefits in the estimation of the re-
gression coefficient of the treatment variable. The first is to
address confounding, should imbalances arise between the co-
variate and the treatment group. The second is to address
conservativism if the covariate were used as a stratification
factor at randomization since failure to include such a co-
variate in the regression model would lead to overestimation
of variance and conservative test procedures (see Anderson,
1989). The third is to address attenuation since biased estima-
tors of the treatment effect would arise if the covariate were
not included in the model (see Gail, Wieand, and Piantodosi,
1984; Lagakos and Schoenfeld, 1984; Anderson and Fleming,
1995; Fleming and Harrington, 1991, Example 4.2.1.).

8. Multiplicative Intensity Model

In many clinical trials, the outcome of primary interest ex-
tends beyond the time of the first event to exploration of the
rate of recurrent events over time. These recurrent events may
be repeated otitis media infections in an infant or repeated
hospitalizations in an adult with a serious disease. To analyze
such data, Aalen (1978) introduced the multiplicative inten-
sity model as a generalization of the proportional hazards
model. In this model, the participant-specific martingale is

M(t) = N(t) — /O t Y (w) Ao (w)e® 2 du, (8.1)

where N and Y are of more general forms than given in (4.1).
Specifically, the right-continuous counting process N(t) still
reflects the number of events that have occurred by time ¢
but now has a range over all nonnegative integers. The at-
risk process Y (t) can be any left-continuous (or more broadly,
predictable) process indicating, by one versus zero, whether
or not the participant is at risk at time ¢. In addition, the
covariate vector is allowed to be a (predictable) process. Self
and Prentice (1982) discussed the link between the propor-
tional hazards model and the multiplicative intensity model
and the subtleties associated with time-dependent covariates.

In the semiparametric setting where Ag(¢) in (8.1) is un-
specified, one can use the partial likelihood principle to make
inference about B and the Breslow estimator to estimate
Ag(t), although now the set D in (7.1) and (7.2) may involve
multiple event times from the same participant. The corre-
sponding large-sample theory was again provided by Ander-
sen and Gill (1982).

9. Regression Model Diagnostics

Extensive development of residuals has provided a wide vari-
ety of model diagnostics that are useful for the Cox propor-
tional hazards model as well as for the broader multiplicative
intensity model. Grambsch, Therneau, and Fleming (1998),
in giving an overview of this development, summarize three
classes of residuals. These are generalized residuals of Cox
and Snell (1968), residuals based on counting process martin-
gales and their transformations, and residuals from general-
ized linear regression models (McCullagh and Nelder, 1989)
for log-linear Poisson regression.
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These latter two classes of residuals can be briefly intro-
duced. For simplicity, consider the participant-specific mar-
tingale in equation (4.3) for the special case of the Cox model
given by (6.2). The corresponding martingale residual is

N (8) = Ni(t) — Ro(t A X)eP %,

where a A b = min(a, b). This residual, introduced by Barlow
and Prentice (1988) and explored by Therneau, Grambsch,
and Fleming (1990), can be interpreted as the observed minus
estimated model-predicted events for participant ¢ over the
interval (0,t]. As t — oo, the martingale residual reduces to

Mi = (Si - Ao(Xi)eﬁlzi.

The martingale residual M; is also within the class of Poisson
residuals (Aitkin and Clayton, 1980; Whitehead, 1980; Laird
and Olivier, 1981; McCullagh and Nelder, 1989). These resid-
uals, symmetrized using the deviance transformation (McCul-
lagh and Nelder, 1989), can be used to detect outliers. The
partial residuals, defined by
Mz/{AO(X’L)eﬁZl}'i_B]Z’L]a i=1,...,n, j=1,.--,p,
where Z;; and Bj are the jth components of Z; and ﬁ, can
be used to suggest the proper functional form for covariates
in the model.

A class of martingale-transform residuals can be obtained
by replacing M;(u) with M;(u) for each i in equation (4.2).
Important members of this class are the p score residuals for
each participant, where p denotes the dimension of 3. These
residuals are defined by

)
LijE/ Hij(t)dMi(t), i=1,...,n, 5=1,...,p,
0

where the left-continuous process H;;(t) is chosen such that
¥.; Li; reduces to the jth component of the partial likelihood
score statistic. These p score residuals can be used to assess
the influence of each participant on the parameter estimates
Bj (j = 1,...,p). They are also related to a class of resid-
uals, proposed by Schoenfeld (1982), that are useful for de-
tecting departures from the proportional hazards assumption.
Grambsch and Therneau (1994) explored the use of plots of
scaled Schoenfeld residuals against event times to estimate
the functional form of the hazard ratio over time.

Lin, Wei, and Ying (1993) studied the cumulative sums
of martingale-based residuals over covariates or event times.
The distributions of these stochastic processes under the as-
sumed model can be approximated by zero-mean Gaussian
processes. Each observed process can then be compared, both
graphically and numerically, with a number of realizations
from the approximate null distribution by computer simula-
tion. These comparisons enable one to determine objectively
whether a seemingly abnormal residual pattern reflects model
misspecification or natural random variation.

10. Alternatives to the Cox Model

Despite the great popularity and versatility of the Cox regres-
sion model, there are reasons to explore alternative models.
First, the proportional hazards assumption may not be satis-
fied in some applications. Second, alternative models charac-
terize different aspects of the associations between covariates
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and survival time. In this section, we describe briefly some
alternative semiparametric models.

In contrast to the proportional hazards model, the additive
hazards model specifies that covariates have additive rather
than multiplicative effects on the hazard function, i.e.,

At | Z) = Xo(t) + B'Z(). (10.1)

This model was discussed by Cox and Oakes (1984, p. 147),
Thomas (1986), and Breslow and Day (1987, p. 182). Us-
ing the counting process martingale approach, Lin and Ying
(1994) obtained closed-form estimators for the regression pa-
rameters 3 and the cumulative baseline hazard function Ag(t).
Semiparametric transformation models take the form

h(T) = B'Z + e, (10.2)

where € is a random error with a given distribution function
F and h is a completely unspecified function. If F' is the ex-
treme value distribution, then (10.2) is the proportional haz-
ards model. If F is the standard logistic function, then (10.2)
is the proportional odds model, under which the hazard ratio
approaches unity as time increases. This class of models was
studied by Clayton and Cuzick (1986) and Dabrowska and
Doksum (1988), and the proportional odds model was studied
by Pettitt (1982), Bennett (1983), and Murphy, Rossini, and
van der Vaart (1997). A significant breakthrough was made
by Cheng, Wei, and Ying (1995), who provided simple and
relatively efficient estimators of 3 for all members of (10.2).

The semiparametric accelerated failure time model takes
the same form as (10.2) but with h specified, usually as h(T) =
log T, and € unspecified. Various methods of estimation for
this model were proposed in the late 1970s and early 1980s.
Koul, Susarla, and Van Ryzin (1981) suggested including in
the least-squares estimator only the uncensored survival times
but weighting them by the inversed probabilities of being un-
censored. The resulting estimator is highly inefficient, espe-
cially in the presence of heavy censoring; however, the under-
lying idea of weighting uncensored observations by their in-
versed probabilities of being uncensored, to be referred to as
the inverse probability of censoring weighting (IPCW) tech-
nique, turns out to be extremely useful in many other con-
texts. In fact, the Cheng et al. (1995) estimators were based
on this idea. A more efficient modification of the least-squares
estimator was provided by Buckley and James (1979), which
replaces the conditional expectations for the censored survival
times by their estimates based on the Kaplan—Meier estima-
tor of the residual lifetime distribution and which involves
an iterative estimation scheme analogous to the EM algo-
rithm (Dempster, Laird, and Rubin, 1977). Prentice (1978),
on the other hand, showed how to adapt the rank estimation
method for noncensored data to the censored data setting.
The asymptotic properties of the Buckley—James and rank es-
timators were established in the early 1990s by Tsiatis (1990),
Ritov (1990), Wei, Ying, and Lin (1990), and Lai and Ying
(1991a,b).

11. Sequential Analysis

When the efficacy and safety of two interventions are being
compared in a clinical trial, interim monitoring often is per-
formed in order to safeguard the interests of study partici-
pants and to achieve improved efficiency. To maintain false
positive and false negative error rates when performing such
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monitoring requires knowledge of the joint distribution of
test statistics that are applied repeatedly over time. A major
challenge in determining such distributions for censored data
statistics is that there are two time axes: the survival time
for each participant is measured from the time he/she enters
the trial and sequential monitoring occurs over calendar time,
which is measured from the start of the study.

Using the martingale theory and other probability tech-
niques, Tsiatis (1982), Slud and Wei (1982), Harrington, Flem-
ing, and Green (1982), Slud (1984), and Gu and Lai (1991)
established the joint distributions for sequentially computed
weighted log-rank statistics. With certain choices of the weight
function, these sequential statistics (asymptotically) have nor-
mal independent increments over the calendar time, i.e., have
the same joint distribution as the cumulative sums of indepen-
dent normal random variables. Thus, group sequential mon-
itoring guidelines based on normal responses, such as those
proposed by Pocock (1977), O'Brien and Fleming (1979), and
Lan and DeMets (1983), can be used. For the (unweighted)
log-rank statistic, the increment is proportional to the number
of observed events.

Sequential properties of censored-data statistics under the
Cox model were studied by Sellke and Siegmund (1983), Tsi-
atis, Rosner, and Tritchler (1985), Gu and Ying (1995), and
Bilias, Gu, and Ying (1997). Such statistics again have the
normal independent increment structure. These results en-
able one to adjust for covariates in treatment comparisons
and to construct repeated confidence intervals (Jennison and
Turnbull, 1989) for the hazard ratio between treatments.

12. Multivariate Failure Time Data

Under the multiplicative intensity model described in Sec-
tion 8, the risk of a recurrent event for a participant is unaf-
fected by earlier events that occurred to the participant un-
less time-dependent covariates that capture such dependence
are included explicitly in the model. In clinical trials applica-
tions, the dependence structures are complex and the forms
of time-dependent covariates are unknown. Furthermore, the
inclusion of such time-dependent covariates that are part of
the response results in biased estimation of the overall treat-
ment effect. Thus, it would be desirable to model the marginal
distribution of the recurrent event times while leaving the de-
pendence structures unspecified.

It is particularly appealing to consider the cumulative mean
function u(t) = E{N*(t)}, where N*(t) is the number of
events that the participant has actually experienced by time
t (in the absence of censoring). This function was first con-
sidered by Nelson (1988) and further studied by Lawless and
Nadeau (1995). A number of authors (e.g., Pepe and Cai,
1993; Lawless, Nadeau, and Cook, 1997; Lin et al., 2000) stud-
ied the following regression models for the cumulative mean
function:

E{N*(t) | 2} = po()e” %, (12.1)

where po(t) is an arbitrary baseline mean function and 3
is a set of regression parameters. If N*(t) is a (nonhomoge-
neous) Poisson process, then (12.1) is equivalent to the inten-
sity model determined by (8.1). Although in general N* is not
a Poisson process, the maximum partial likelihood estimator
for B of (8.1) remains consistent and asymptotically normal
under (12.1). The covariance matrix, however, can no longer
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be estimated by the inversed information matrix. A sandwich
variance estimator has to be used instead.

In the one-sample case, p(t) can be consistently estimated
by the Nelson estimator. Under model (12.1), the baseline
mean function po(¢) can be consistently estimated by the
Breslow estimator, and the covariate-specific mean function
can be estimated in a similar fashion (see Lin et al., 2000).
It is particularly informative to display the estimated mean
functions for different treatment arms and for specific covari-
ate patterns.

In some clinical trials, each participant can potentially ex-
perience more than one type of event. Examples include the
developments of physical symptoms or diseases in several or-
gan systems (e.g., stroke and cancer) or in several members
of the same organ system (e.g., eyes or teeth). Models such as
(8.1) and (12.1) are not applicable since the multiple events
on the same participant are of different natures and in fact
may not even be ordered.

It is convenient to formulate the marginal distributions of
the multiple event times through the proportional hazards
models while leaving the dependence structures completely
unspecified. Let K denote the number of potential events per
participant. The hazard function for the kth event of the ith
participant is postulated to take the form

At | Zii) = Mo)e® 25D k=1 K, i=1,...,n,

(12.2)
where Zyg; is the covariate vector for the ith participant with
respect to the kth event, A\yg (k = 1,...,K) are arbitrary
baseline hazard functions, and 3 is a set of regression param-
eters. In some applications (e.g., an ophthalmologic study in-
volving the left and right eyes), it is natural to impose the
restriction that A\jg = -+ = Agg, wheareas in others (e.g.,
the setting of multiple diseases), it is necessary to allow the
Ako’s to be different.

If the event times were independent, the partial likelihood
could be easily constructed for B of model (12.2). The re-
sulting estimator turns out to be consistent and asymptoti-
cally normal even if the event times are correlated; however,
a sandwich variance estimator is again needed to account for
the intraclass dependence. This approach was pioneered by
Wei, Lin, and Weissfeld (1989) and further developed by Lee,
Wei, and Amato (1992), Liang, Self, and Chang (1993), and
Cai and Prentice (1995), among others.

The marginal approach discussed above treats the depen-
dence of related event times as a nuisance. An alternative
approach is to explicitly formulate the nature of dependence
by the so-called frailty. The term frailty was first introduced
by Vaupel, Manton, and Stallard (1979) to illustrate the con-
sequences of a lifetime being generated from several sources
of variation. The use of frailty in bivariate survival time data
was considered by Clayton (1978). Frailty models were stud-
ied extensively in the 1980s by Clayton and Cuzick (1985),
Hougaard (1987), and Oakes (1989), among others. The frail-
ty-model analog of (12.2) specifies that the hazard function
for the kth event of the ith participant, given the frailty v;,

takes the form
Mei (8 | Zss i) = vidgo ()€l Zri(0), (12.3)

where v; (¢ = 1,...,n) are independent random variables.
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Conditional on v;, the event times on the ith participant are
assumed to be independent.

The parameter vector 3 has a population-average inter-
pretation under model (12.2) and a subject-specific interpre-
tation under model (12.3). Models (12.2) and (12.3) cannot
hold simultaneously unless v is a positive-stable variable. It is
very challenging, both theoretically and computationally, to
deal with frailty models such as (12.3). Major progress was
made in the 1990s. In the special case of gamma frailty mod-
els, maximum likelihood estimation via the EM algorithm was
studied by Nielsen et al. (1992), Murphy (1994, 1995), Ander-
sen et al. (1997), and Parner (1998), among others. Recently,
Therneau and Grambsch (2000) suggested a penalized likeli-
hood method for gamma and log-normal frailty models.

Nonparametric estimation for the multivariate survival
function is a fundamental problem in the analysis of multi-
variate failure time data. Using the IPCW technique, Lin and
Ying (1993) developed a simple estimator for the special case
where there is a common censoring time for all event times
of the same participant. Estimation in the general setting has
been studied by Dabrowska (1988), Prentice and Cai (1992),
and van der Laan (1996), among others.

The occurrence of one event (e.g., death) may preclude the
development of another (e.g., relapse of cancer). In some ap-
plications, such as cause-specific mortality studies, the par-
ticipant can only experience one of several potential events.
This type of data is referred to as competing risks. The sim-
plest solution to this problem is to censor the event time of
interest at the time of the competing events and then apply
the standard survival analysis methods such as the log-rank
test and Cox regression. The results pertain to the so-called
cause-specific hazard function, which is given by (2.1) with U
representing the time to the competing events.

An important limitation of the cause-specific hazard func-
tion is that the associated S¥(t) is not a survival function
unless the cause of interest is independent of other risks and
the other risks could be eliminated without altering the distri-
bution of the cause of interest. Thus, in general, the Kaplan—
Meier estimator does not pertain to the survival function or
disease incidence. Special methods have been developed to es-
timate disease incidence functions (e.g., Gray, 1988; Pepe and
Mori, 1993; Fine and Gray, 1999).

13. Dependent Censoring and Related Problems

Virtually all the methods presented in the previous sections
require the assumption of independent censoring. As discussed
in Section 2, this assumption is generally true for censoring
due to staggered entry but may not hold for censoring caused
by voluntary patient withdrawal. As also discussed in Section
2, the survival distribution is not identifiable in the presence
of dependent censoring. Lin, Robins, and Wei (1996) demon-
strated that, for certain dependently censored data, it is possi-
ble to estimate the treatment difference in the survival distri-
bution even if the survival distributions themselves are not es-
timable. If one is willing and able to model dependent censor-
ing through time-dependent covariates, then the survival dis-
tribution is identifiable. Assuming that such time-dependent
covariates are available, Robins and Rotnitzky (1992) showed
how to use the IPCW technique mentioned in Section 10 to
estimate the survival distribution.
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Another type of dependent censoring arises in the contexts
of quality-adjusted lifetime and medical cost. Because a par-
ticipant who accumulates medical costs at higher rates tends
to generate greater cumulative medical costs at both the sur-
vival time and censoring time than a participant with lower
accumulation rates, the lifetime cost is positively correlated
with its censoring variable, i.e., the cumulative cost at the cen-
soring time (Lin, 2000). A similar phenomenon occurs for the
quality-adjusted lifetime (Gelber, Gelman, and Goldhirsch,
1989). Thus, standard survival analysis methods, such as the
Kaplan—Meier estimator and Cox regression, cannot be ap-
plied to censored medical costs or quality-adjusted lifetime
data. The IPCW technique can be used to handle this type of
dependent censoring (see Zhao and Tsiatis, 1997; Lin, 2000).

The IPCW technique turns out to be extremely useful for a
very general type of censored /missing data satisfying coarsen-
ing at random (Heitjan and Rubin, 1991; Gill, van der Laan,
and Robins, 1997). Under this assumption, the risk of cen-
soring at time ¢ depends on the full data (i.e., the data that
would be observed in the absence of censoring) only through
the history of observed time-dependent covariates up to t.
For such data, the IPCW technique can be used to gener-
ate locally efficient estimators with double robustness in that
the estimators are consistent if either the model for the full
data or the model for the censoring mechanism is correctly
specified and are asymptotically efficient if both models are
correct. The local efficiency and double robustness were estab-
lished, respectively, by Robins and Rotnitzky (1992) and by
Scharfstein, Rotnitzky, and Robins (1999) in their rejoinder.

14. Additional Developments and Future Directions

Many areas of survival analysis have been reviewed in the pre-
vious sections. Further developments are anticipated in many
of those areas. For example, it would be highly useful to de-
velop efficient and reliable numerical algorithms for the semi-
parametric estimation of the accelerated failure time model.
The Cheng et al. (1995) estimators for (10.2) require model-
ing the censoring distribution, and it would be worthwhile to
explore estimation procedures that do not involve such model-
ing. In the area of multivariate failure time data, efficient esti-
mators for model (12.2) have yet to be identified, and further
theoretical and numerical advances are warranted for model
(12.3). The theory of locally efficient estimators discussed in
Section 13 offers tremendous power for solving a wide range
of problems.

There are many other important areas of survival analysis
that have not been covered in this article. In the reminder
of this section, some are briefly mentioned, focusing on those
areas in which future research activities are anticipated.

When the event of interest is asymptomatic, as is the case
with cancer detection or HIV infection, the event time cannot
be measured exactly but is rather known to lie in an inter-
val determined by two successive examinations. Such data
are said to be interval censored. The special case in which
there is only a single examination time for each participant is
called current status data. Parametric inferences for interval-
censored data are straightforward, whereas non- and semi-
parametric inferences are very difficult. Significant progress
has been made toward non- and semiparametric analysis of
current status data. In particular, Groeneboom and Wellner
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(1992) ascertained the limiting distribution of the nonpara-
metric maximum likelihood estimator of the survival function.
Huang (1996), Lin, Oakes, and Ying (1998), Rabinowitz, Tsi-
atis, and Aragon (1995), and Rossini and Tsiatis (1996) pro-
vided semiparametric methods under the proportional haz-
ards, additive hazards, accelerated failure time, and propor-
tional odds models, respectively. No such results are avail-
able for general interval-censored data, although some ad hoc
methods (e.g., Finkelstein, 1986; Satten, 1996) have been sug-
gested. Considerable future activities are expected in this
area.

Clinical trial participants may not comply with the treat-
ments they were randomly assigned to receive. In long-term
follow-up studies, participants may change their treatments
during the course of a trial according to their past responses.
In fact, such dynamic treatment regimes are desirable from
both the scientific and ethical points of view. Noncompliance
and time-dependent treatments pose serious challenges. The
use of time-dependent covariates to represent the treatments
the participants actually received does not enable unbiased
evaluation of treatments. Structural nested failure time mod-
els such as that of Robins and Tsiatis (1991) allow causal
interpretation of treatment differences under certain condi-
tions. Further research in this area is needed.

Failure time data is one type of data collected in long-
term follow-up studies. Another type is so-called longitudinal
data, which measures immediate responses, such as biological
markers and quality of life scores, repeatedly over time. Joint
modeling of longitudinal and failure time data has recently
received tremendous attention from researchers in the fields
of survival analysis and longitudinal data analysis. Significant
progress is expected to occur in this area over the next few
years.

The field of survival analysis has been dominated by the
frequentist philosophy. The Baysian approach has important
potential in survival analysis, especially for handling com-
plex models and data structures, such as dependent censor-
ing, noncompliance, interval censoring, and multivariate fail-
ure times. Considerable progress has already been made in
this area (see Sinha and Dey (1997) for an excellent review).
One expects to see further developments and refinements of
the Baysian methods as well as their applications in clinical
trials over the coming decades.

The applications of survival analysis methods to clinical
trials have been greatly facilitated by the developments of
software packages. Standard methods such as the Kaplan—
Meier estimator, weighted log-rank tests, Cox regression, and
parametric regression with (univariate) right-censored data
are now available in virtually all software packages. The mul-
tiplicative intensity model and the sandwich variance estima-
tors for models (12.1) and (12.2) have been implemented in
major packages, such as SAS, S-Plus, and STATA. The pe-
nalized likelihood method for gamma and log-normal frailty
models has recently been incorporated into S-Plus. However,
most of the newer methods, such as those for the semipara-
metric analysis of models (6.1), (10.1), and (10.2) and those
mentioned in this section, are not available in software pack-
ages. One is certainly to see further expansion of software.

Significant progress has also been made in other areas,
such as adaptive tests, multistate models, time-dependent re-
gression coefficients, nonparametric regression, graphical and
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computer-intensive methods, surrogate markers, and miss-
ing/mismeasured covariates. Additional activities are antic-
ipated in those areas.

The field of survival analysis was born and developed dur-
ing the 20th century, partly in response to the needs in clinical
trials applications. As evident from the above discussion, the
field is still very much alive today and is expected to expand
in the 21st century. Although it is difficult to predict exactly
how the field will evolve in the future, it is certain that the
interplay of survival analysis and clinical trials will continue
to further the advancements of both fields in the new millen-
nium.
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RESUME

L’analyse de la survie est née au vingtieme siecle, et a connu
une importante croissance dans le seconde moitié du siecle.
Les développements dans ce domaine qui ont eu le plus pro-
fond impact sur les essais cliniques sont la méthode de Kaplan-
Meier (1958) pour l'estimation de la fonction de survie, la
statistique du log-rank (Mantel, 1956) pour comparer deux
distributions de survie, et le modele des hasards proportion-
nels (Cox, 1972) pour quantifier les effets de covariables sur
le temps de survie. La théorie des martingales pour proces-
sus de comptage défrichée par Aalen (1975) offre un cadre
unifié pour I’étude des propriétés des statistiques d’analyse
de survie, aussi bien pour petits que pour grands échantillons.
Des progres significatifs ont été réalisés, et on peut espérer de
nouveaux développements dans plusieurs domaines, comme le
modele & temps accéléré, les données multidimensionnelles de
survie, les données censurées par intervalle, la censure dépen-
dante, les protocoles de traitement dynamiques et 'inférence
causale, la modélisation jointe de données longitudinales et de
données de durée, et les méthodes bayésiennes.
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