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Section II. Systems and programs

MULCOX: a computer program for the Cox regression analysis
of multiple failure time variables

D.Y. Lin

Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, U.S.A.

MULCOKX is a user-friendly FORTRAN program for the analysis of regression effects when individual study subjects
may experience multiple events or failures. Each marginal distribution of the multivariate failure time variables is
formulated by a Cox proportional hazards model. The maximum partial likelihood estimators of the regression
parameters in these marginal models are approximately jointly normal. The MULCOX program estimates the marginal
models as well as the joint covariance matrix. In addition, it implements several multivariate inference procedures. The
program runs on both mainframe computers and microcomputers. The running time is quite acceptable even for large
samples. A simple example is provided to illustrate the features of the program. ’

FORTRAN; Incomplete observations; Multivariate failure times; Proportional hazards; Repeated events; Simulta-

neous inference; Survival data

1. Introduction

Many biomedical studies record the times to two
or more distinct events or failures on each subject.
The failures may be events of different natures or
may be repetitions of the same type of events. The
examples of such multivariate failure times in-
clude the development of physical symptoms in
several major body systems, and the time sequence
of asthmatic attacks, infection episodes, tumor
diagnoses, or tumor recurrences in individual pa-
tients. In these studies, investigators are often
interested in assessing the effects of -prognostic
factors or covariates (e.g., treatment, age and sex)
on the multivariate failure time variables.
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Since the Cox proportional hazards model [2] is
the most commonly used regression technique for
analyzing univariate failure time data, it is natural
to regress each component of the multivariate
failure time variables on covariates by a Cox
model. In multivariate survival studies, however, it
is often desirable to make the statistical inference
involving parameters of several failure time varia-
bles. For example, we may want to evaluate how
the effects of a given covariate vary among failure
time variables. Clearly, such a multivariate in-
ference must take into consideration the correla-
tion structure of the parameter estimators in the
marginal failure time -models. Recently, Wei-et al.
[4] proved that the parameter estimators of the
marginal Cox models are asymptotically jointly
normal with a covariance matrix that can be con-
sistently estimated. These authors also proposed
various simultaneous inference procedures; In the
next Section, we will present ‘the computational
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methods for this new methodology. The computer
program MULCOX was designed to implement
these statistical procedures. This program will be
described in Section 3 and illustrated with a sim-
ple example in Section 4.

2. Computational methods

For the kth failure time variable, k=1,..., K, let
V,: be the failure time of the ith subject, i=
1,..., n. In practice, however, we can only observe
the bivariate vector (Xp;, 4,;), where X, =
min(V,;, Cy;), Cy; is the censoring time of the ith
subject with respect to the kth failure time varia-
ble, and 4,,=1 if X;;=V,, and 4., =0 other-
wise. If V,; is missing, we let C,; be 0. This
implies that X,; =0 and A,, = 0 since ¥V, is posi-
tive. In addition, let Z; =(Z,;,..., Z,;)’ denote a
p X 1 vector of covariates for the ith subject.

The hazard function of the kth failure time
variable for an individual with covariate Z is
assumed to take the form

Ne(t; Z) = No(2) exp(BLZ),

where A q(f) is an unspecified baseline hazard
function, and B, = (By,...,B,x)  is the failure-
specific regression parameter The corresponding
partial likelihood is

n

Lk<ﬁ>=n{Z

i=1
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exp(B'Z;) }
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where Z£,(t) 1s the set of labels attached to the
subjects at risk just prior to time ¢ with respect to
the kth failure time variable. Then the maximum
partial likelihood estimator B, for B8, is the value
of B that maximizes L,(f), which is computed by
the Gauss-Newton algorithm. The Breslow ap-
proximation [1] is used in the case of tied faJlure
times.

Wei et al. [4] showed that, for large n, ,ér
(,l?l, .éx) is approximately normal wnh mean
Br= (,Bl, ., Bx)’ and with joint covariance ma-
trix Q, say. These authors also provided a con-
sistent estimator Q for Q.

jk(ﬁk) = i Aki

Before expressing the covariance matrix estima-
tor Q we need to introduce some notations. First,
let Y,(1)=1if X;;>t and Y,,(¢) = 0 otherwise.
Second, let

n

SO(B, 1) = Z Y,.(t) exp(B'Z), .
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i=1
In addition, let

{s@(ﬁk, Xe:)

SO (B, Xui)

i=1

508 %) (B Xe) }
k (Bka in) ’

OB Xk,)} |

S(O)(ﬁk) ka) S

n A Y (X)) exp( ﬁkz )

i=1 (n)(gk“ kv)'r) ’

We(By) = Ak.{z.-

R N

ik Tepp»

Fivally, et B5,(Ac. By = Z,-IM,(ﬁk)m,(ﬁ,)
and Du(Be, B)= Akl(ﬁk)Bk,(ﬁk, B A7 ().

Then the covariance matrix estimator Q is

‘bll(ﬁl’ ﬁl) blK(ﬁl’ ﬁl{)
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This estimator turns out to be a robust estimator
of the covariance matrix of ﬁT [3]-

The aforementioned results provide the basis
for the simultaneous inference about the effects of
covariates on the multivariate failure time varia-
bles. In particular, we can test hypotheses for
linear combinations of the B8,’s. The multivariate
general linear hypothesis is written as

H,: CB;=0,

where the r X pK matrix C is called the contrast
matrix. For example, if we want to test the hy-
pothesis that the multivariate failure times do not
depend on any covariates, then C will be the
PK X pK identity matrix. The Wald statistic for
testing H, is

(chr) (coc’) (CﬁT)

which has an asymptotic x? distribution with r
degrees of freedom.

Next, suppose that we are interested in the
effects of a particular covariate on the K failure
time variables. Let us denote these K parameters
by n, (k=1,..., K). The 5,’s are obtained from
Br through a contrast matrix C for which CB8,=
(M., 1g)’. If we assume that 0, = ... =g, =7,
it is natural to estimate 7 by a linear combination
of the f’s, that is, T k%, with XX _ A, =1.
The estimator 4 w1th the array of weights
(hy e, hK) = (e'¥? e)” 1¥~Te, where e =
Qa,.. 1) and ¥= CQC has the smallest
asymptotic variance among all the linear estima-
tors. It is obvious that the variance of % can be
estimated by (e’ ¥~ 'e)~. In applications, even if
the 7,’s are unequal, we may still combine the
fii’s to draw a conclusion about the ‘average ef-
fect’ of the covariate provided that there are no
qualitative differences among the n,’s.

3. Computer program
3.1. General description

The MULCOX computer program was written in
standard FORTRAN-77 with double” arithmetic
precision. The source program consists of 980
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lines of codes and requires 29 kbytes of disk
storage. No external subroutines or functions are
used. The program can run on a mainframe com-
puter or on a microcomputer.

The amount of CPU time used by MULCOX
depends on the computer installation and the size
of data. In general, the time consumption is
minimal on a mainframe even for large data sets.

The program allows arbitrary values of n, p
and K. The matrices of data and computational
results are stored in a single one-dimensional array
A. The dimension of 4 may be modified by the
user if necessary.

The covariates to be included in the model can
be different from the prognostic variables in the
data file. There is a subroutine in MULCOX
which can be easily modified for necessary data
transforrnation. The user who is unfamiliar with
FORTRAN programming should transform the
data through a software of his/her choice before
running MULCOX.

3.2. Input

The program MULCOX requires two separate
groups of input: the data input and the control
parameters input. The data (times, failure indica-
tors and covariates) should be in the form of
Table 1. Note that we have deliberately labeled
the covariates in Table 1 by the ZX’s to dis-
tinguish them from the covariates to be included
in the model (the Z,,’s). Note also that the num-
ber of covariates in the data file, say, ¢ can be
different from thc number of covariates in the
model p.

The control parameters are described in Table
2. These parameters can be read from the key-
board upon execut1on of MULCOX or from an
input file. -

When specifying the format of the data file, the
user may enter FREE or free if the data items are
separated by spaces or commas; otherwise, a
FORTRAN format expression with real and skip
fields such as (5X, F10.5, F5.1, F8.5, F5.1, 3X,
2F6.3) is required.

3.3. Outpur

The computational results are written to the out-
put file specified by the user. The output consists
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TABLE 1

The structure of data input

X An Xan An ... Xkw Axi 2y Z3 a1
X2 DAz Xz Dy ... Xk2 Ar2 Ziy Zp a2
Xln Aln X2n A'Zn LR XKn Al(n an Z;n Z;n

TABLE 2

The input of control parameters
Parameter . Type
title character
file name of data input character
file name of program output character
n integer
K integer
name of the 1st failure time variable character
name of the Kth failure time variable character.
q integer
P integer
name of the 1st covariate character
name of the pth covariate character
format of data input character
number of multivariate hypotheses integer
row dimension of C for the first hypothesis integer
row dimension of C for the last hypothesis integer
number of common parameters to be estimated integer
row dimension of C for the first common parameter integer
row dimension of C for the last common parameter integer
matrix C for the first multivariate hypothesis real
matrix C for the last multivariate hypothesis real
matrix C for the first common parameter real
matrix C for the last common parameter real




of four parts: I. estimation of marginal models, II.
estimation of joint covariance matrix, III. testing
multivariate hypotheses, and IV. estimation of
common parameters. The output is self-explana-

tory.

4. Application

To illustrate the use of MULCOX, let us consider
a recent clinical trial evaluating the effectiveness
of the drug ribavirin for treating patients with
acquired immunodeficiency syndrome (AIDS).
Thirty-six patients were randomly assigned to one
of three groups: placebo, low-dose ribavirin and
high-dose ribavirin. One of the main objectives of
the study was to investigate the antiretroviral ca-
pability of ribavirin over time. Serum samples of
each patient were collected at weeks 4, 8 and 12.
The HIV-1 virus expression was evaluated by re-
cording the number of days a patient’s lympho-
cytes were in culture before virus positivity was
detected. Hence, each patient should have three
such event times. Some observations were missing,
however, because patients did not make the sched-
uled visits or because serum specimens were inad-
equate for laboratorial analysis. In addition,
censored observations occurred when the culture
required a longer period of time to register as
virus positive than was achievable in the labora-
tory, or when the serum sample was contaminated
before positivity was detected.

In this example, V; is the number of days to
virus positivity in the kth serum sample of the ith
patient (k=1, 2, 3; i=1,...,36). Let Z;,=1 if
the ith patient was in the low-dose group and
Z,; = 0 otherwise, and let Z,, =1 if the ith patient
was in the high-dose group and Z,; = 0 otherwise.
The corresponding regression coefficients 8, and
B, can be interpreted, respectively, as the treat-
ment effects from the low-dose and high-dose
ribavirin after k& months of treatment.

The data from this study are shown in Fig. 1.
The last column is the treatment label: ‘1’, 2’ and
‘3’ denote placebo, low-dose ribavirin and high-
dose ribavirin, respectively. The subroutine given
in Fig. 2 was used to create covariates Z,; and Z,;
from the treatment label.
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S 1 6 1 7 1 1
6 1 4 1 5 1 2
21 1 9 1 8 0 3
13 1 7 1 21 0 3
31 1 19 0 21 0 2
16 1 6 1 20 1 3
16 1 17 1 21 0 2
4 1 5 1 10 1 1
6 1 7 1 6 1 1
3 1 8 1 6 1 3
10 1 0 0 21 0 1
27 0 19 0 0 0 2
7 1 16 1 23 0 2
21 1 0 0 25 0 3
15 1 8 1 0 0 1
3 1 0 0 6 1 1
28 0 7 1 19 0 2
7 1 19 1 3 1 3.
28 0 3 1 16 1 2
4 1 7 1 3 1 1
15 1 12 1 16 1 2
11 1 13 1 21 0 3
27 0 18 0 9 1 3
14 1 14 1 6 1 3
8 1 11 1l 15 1 3
18 1 21 0 22 1 2
9 1 12 1 12 1 1
8 1 4 1 7 1 3
9 1 19 1 19 0 1
8 1 3 1 9 1 3
6 1 5 1 6 1 1
9 1 0 0 18 1 1
8 1 4 1 7 1 2
9 1 20 0 17 0 1
19 0 10 1 17 0 3
4 1 21 0 7 1 2

Fig. 1. Data input of the sample run: aids.dat.

The control parameters for this run were pro-
vided directly from a computer terminal (see Fig.
3). The two multivariate hypotheses to be tested
were Hy: By, = By, = B3 and Hy: By = By = Bis.
The one common parameter to be estimated was
n= B =B = P

This run only took a couple of seconds on a
VAX-8550 computer. Its output is displayed in
Fig. 4. The results indicated that high-dose
ribavirin was beneficial to AIDS patients only at
week 4. Although the effects of low-dose ribavirin
also seemed to diminish over time, the observed
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*

* TRANS
*

N = sample size.

QOO0 00000000

SUBROUTINE TRANS (Z,N,NP)
IMPLICIT REAL*8 (A-H,0-2Z)
DIMENSION 2 (NP, N)

DO 100 I=1,N

Description of parameters:

hhkkhkkhkhkhkkkhkhkkkhkkhkhhhkkkhkkhkkhhkkkhhhkkhkkkhkkhkhkkkkhkkhkhhhkkhkhhkkhkkhkhkik

*
SUBROUTINE *

*

ARK A A KK A KK AR KRR A AR AR AI AR A AR AR AR AR AR ARk ARk Ak kkhkkkkkkhhkhkhkkkkk

This subroutine performs the transformation of covariates.

1.
2. NP = number of covariates to be included in the model.
3. Z(J3,I) = Jth covariate of the Ith individual.

On input, 2(1,I) takes the value of 1, 2, or 3 according to
if the Ith patient was assinged to placebo, low dose ribavirin,
or high dose ribavirin. On output, Z(1,I) is replaced by the
indicator variable of low dose ribavirin and 2(2,I) is the
indicator variable of high dose ribavirin.

IF (DABS(Z(1,I)-1.D0).LT.1.D-10) THEN

2(1,1)=0.D0
Z2(2,I)=0.D0

ELSE IF (DABS(2(1,I)-2.D0).LT.1.D-10) THEN

2(1,I)=1.D0
2(2,1)=0.D0
ELSE
2(1,1)=0.D0
2(2,I)=1.D0
ENDIF
100 CONTINUE
RETURN
END

Fig. 2. Transformation subroutine of the sample run.

changes were not statistically significant. The 95%
confidence interval for the average hazard ratio of
low-dose ribavirin over placebo is about (0.18,
0.81).

5. Availability

The program MULCOX can be obtained from the
author at no charge. Those interested in obtaining

a copy of the program should send the author a
request with a blank floppy diskette.
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[jimmy]l % MULCOX
PLEASE ENTER THE TITLE OF THIS RUN
the study of ribavirin on AIDS patients

ENTER

aids.dat

ENTER
aids.out

ENTER
36

ENTER
3

ENTER
Week 4

ENTER
Week 8

ENTER
Week 12

ENTER
1

ENTER
2

ENTER
Low Dose

ENTER
High Dos

ENTER
free

ENTER
2

ENTER
2

ENTER

ENTER
ENTER

ENTER
1 0 -1
1 0 0

ENTER
0 1 O
6 1 0

ENTER
1000
010
0000

o

THE NAME OF DATA FILE

THE NAME OF OUTPUT FILE

THE NUMBER OF STUDY SUBJECTS

THE NUMBER OF FAILURE TIME VARIABLES

THE NAME OF FAILURE TIME VARIABLE 1

THE NAME OF FAILURE TIME VARIABLE 2

THE NAME OF FAILURE TIME VARIABLE 3

THE NUMBER OF COVARIATES IN THE DATA FILE

THE NUMBER OF COVARIATES IN THE ASSUMED MODEL
THE NAME‘OF COVARIATE 1 |

THE NAME OF COVARIATE 2

iﬂE FORMAT OF THE DATA FILE

THE NUMBER OF MULTIVARIATE HYPOTHESES

THE DIMENSION OF MULTIVARIATE HYPOTHESIS 1
THE DIMENSION OF MULTIVARIATE HYPOTHESIS 2
THE NUMBER OF COMMON PARAMETERS

THE NUMBER OF COMPONENTS IN COMMOM PARAMETER 1

THE CONTRAST MATRIX FOR MULTIVARIATE HYPOTHESIS

0 0 0
0-1 0
THE CONTRAST MATRIX FOR MULTIVARIATE HYPOTHESIS
-1 0 0
0 0 -1

THE CONTRAST MATRIX FOR COMMON PARAMETER 1
00
00
10

PLEASE WAIT !

[Jimmy] %

Fig. 3. Control parameters input of the sample run.
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x % %k % k k * k *x k *k Kk *k *k * Kk *xk *k * % %k *x *k *k * %

Regression Analysis with Multiple Failure Time

Variables Based on Cox Proportional Hazards Models

* % % %k % ¥ X
* % % % % X %

X k Kk % Kk K Kk k k k k k Kk Kk k Kk Kk Kk kxk *k *x *k *x *x * %

References: 1. L.J. Wei, D. Y. Lin and L. Weissfeld (1989).
Regression analysis of multivariate incomplete
failure time data by modeling marginal distributions.
Journal of the American Statistical Association
84, 1065-1073.

2. D. Y. Lin (1990). MULCOX: a computer program for
the Cox regression analysis of multiple failure
time variables. Computer Methods and Programs in
Biomedicine (in press).

PROBLEM TITLE IS: the study of ribavirin on AIDS patients
DATA FILE IS: aids.dat
QUTPUT FILE IS: aids.out

I. ESTIMATION OF MARGINAL MODELS

FAILURE TIME VARIABLE = Week 4

Total number of study subjects = 36
Number of missing observations = 0
Number of observed failure times = 31
Log partial likelihood with zero beta = -90.17
Maximum log partial likelihood = -86.29
Global chi-square tests with D.F. = 2

-2 log L.R. = 7.75 P-value = 0.02079

Score = 8.47 P-value = 0.01450

PARAMETER ESTIMATE STANDARD ERROR EST/S.E.
Low dose -1.39393 0.52493 ~2.65544
High dose -0.93831 0.45518 -2.06140

Fig. 4. Program output of the sample run: aids.out.
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FAILURE TIME VARIABLE = Week 8

Total number of study subjects = 36
Number of missing observations = 4
Number of observed failure times = 26
Log partial likelihood with zero beta = -75.46
Maximum log partial likelihood = -74.27
Global chi-square tests with D.F. = 2
-2 log L.R. = 2.39 P-value = 0.30264
Score = 2.27 P-value = 0.32098
PARAMETER ESTIMATE STANDARD ERROR EST/
Low dose -0.65523 0.52309 -1.2
High dose 0.01999 0.46868 0.0
FAILURE TIME VARIABLE = Week 12
Total number of study subjects = 36
Number of missing observations = 2
Number of observed failure times = 22
Log partial likelihood with zero beta = -66.80
Maximum log partial likelihood = -66.18
Global chi-square tests with D.F. = 2
-2 log L.R. = 1.26 P-value = 0.53380
Score = 1.28 P-value = 0.52756
PARAMETER ESTIMATE STANDARD ERROR EST/
Low dose -0.61512 0.5544¢ -1.1
High dose -0.33102 0.50498 -0.6
ESTIMATION OF JOINT COVARIANCE MATRIX
.245e+00 0.753e-01 0.507e-01 0.168e-01 0.107e+00 ©
.753e-01 0.136e+00 0.265e-01 0.406e-01 0.458e-01 0
.507e~-01 0.265e-01 0.287e+00 0.119e+00 0.133e+00 0
.168e-01 0.406e-01 0.119e+00 0.167e+00 0.763e-01 0
.107e+00 0.458e~-01 0.133e+00 0.763e~01 0.257e+00 O
.607e-01 0.911e-01 0.907e~01 0.686e-01 0.114e+00 O

Fig. 4 (continued).

S.E.

5261
4266

S.E.

0953
5551

.607e~-01
.911e-01
.907e-01
.686e-01
.114e+00
.229%e+00

133
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ITI. TESTING MULTIVARIATE HYPOTHESES
MULTIVARIATE HYPOTHESIS 1
The contrast matrix is as follows:

1. 0. -1. 0. 0. 0
1. 0. 0. 0. -1. 0.

Wald statistic = 2.18402
Degrees of freedom = 2
P-value = 0.33554

MULTIVARIATE HYPOTHESIS 2

The contrast matrix is as follows:

0. 1. 0. ~-1. 0. 0.

0. 1. 0. 0. 0. ~-1.
Wald statistic = 4.67879
Degrees of freedom = 2
P-value = 0.09639

IV. ESTIMATION OF COMMON PARAMETERS

COMMON PARAMETER 1

The contrast matrix is as follows:

1. 0. 0. 0. 0. 0.
0. 0. 1. 0. 0. 0.
0. 0. 0. 0 1. 0.

The array of optimal weights is as follows:

0.44109 0.33964 0.21927

Estimator = -0.97227
Standard error = 0.38595
Z-score = -2.51917

Two-sided p-value = 0.01176

Fig. 4 (continued).
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