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S

In many follow-up studies, each subject can potentially experience a series of events,
which may be repetitions of essentially the same event or may be events of entirely different
natures. This paper provides a simple nonparametric estimator for the multivariate distri-
bution function of the gap times between successive events when the follow-up time is
subject to right censoring. The estimator is consistent and, upon proper normalisation,
converges weakly to a zero-mean Gaussian process with an easily estimated covariance
function. Numerical studies demonstrate that both the distribution function estimator and
its covariance function estimator perform well for practical sample sizes. An application
to a colon cancer study is presented.
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1. I

In many scientific investigations, each study subject can potentially experience more
than one event. These multiple events data normally fall into one of two categories,
‘parallel’ and ‘serial’. In the parallel system, several possibly dependent failure processes
act concurrently, while in the serial system there is a natural ordering of times of occurrence
of events. Data of the latter type arise more frequently than the former and are the focus
of this paper. Medical examples of serial events include the recurrences of a given illness,
such as infection episodes, and the progression of a disease through successive stages, such
as  infection��death.

There are two possible time scales for serial events: the gap time is the duration between
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two successive states or events while the total time is measured from the start of follow-up
to the occurrence of the event. In many applications, the investigators are more interested
in the gap time than the total time, e.g. Gail, Santner & Brown (1980). For example, when
evaluating the efficacy of a treatment on an episodic illness, it is often important to assess
whether or not the treatment delays the time from the initiation of the treatment to the
first episode as well as the time from the first episode to the second episode, and so on.
The total time from the initiation of the treatment to the second episode is of less interest
because a treatment which delays the first episode will inevitably lengthen the total time
to the second episode even if it becomes ineffective after the first episode.

A fundamental problem in analysing multiple events data is the estimation of the multi-
variate distribution function in the presence of right censoring. A number of nonparametric
estimators are currently available for estimating the joint survival distribution of parallel
events based on censored observations; see Andersen et al. (1993, pp. 688–704) for a
survey. In dealing with the gap time distributions of several events, the main new difficulty
is that, when the overall follow-up time is subject to independent right censoring, the gap
times except the first one are subject to dependent censoring. Therefore, even the estimation
of the marginal distributions of the gap times is nontrivial.

In this paper, we present a simple nonparametric approach to estimating the joint and
marginal distributions of the gap times. We describe the proposed estimators and their
asymptotic properties in the next section. We then report the results of some simulation
studies in § 3 and present a real example in § 4. In the final section, we discuss some
extensions and potential uses of the proposed estimators.

2. N 

Suppose that an individual subject may experience K consecutive events at times
Y1<Y2< . . .<Y

K
, which are measured from the start of the follow-up. We are primarily

interested in the gap times T1)Y1 , T2)Y2−Y1 , . . . and T
K
)Y

K
−Y

K−1 . As usual, assume
that the follow-up time is subject to independent right censoring by C, which implies that
(Y1 , . . . , YK) are independent of C. On the other hand, for any k=2, . . . , K, the gap time
T
k

is subject to right censoring by C−Y
k−1 , which is naturally correlated with T

k
unless

T
k

is independent of Y
k−1 . The marginal distributions of (T2 , . . . , TK) cannot therefore

be estimated by the Kaplan–Meier method, and neither can the joint distribution of
(T1 , . . . , TK) be estimated by any existing estimator for parallel events.

We will develop a simple nonparametric estimator for the joint distribution of
(T1, . . . , TK), which does not impose any assumption on the dependence structures of the
gap times. To ease our presentation, we take K=2 in this section and discuss the extension
to the setting of K>2 in § 5.

Suppose that there are n independent subjects in the study so that (Y
1i

, Y
2i

, C
i
)

(i=1, . . . , n) are n independent replicates of (Y1 , Y2 , C). The observable data consist
of (YB

1i
, YB

2i
, d
1i

, d
2i

) (i=1, . . . , n), where YB
ki
=Y

ki
mC

i
and d

ki
=I(Y

ki
∏C

i
) (k=1, 2;

i=1, . . . , n). Here and in the sequel, am b=min (a, b), al b=max (a, b), a+=max (a, 0)
and I(.) is the indicator function.

Let F1 and F2 be the marginal distribution functions of T1 and T2 and let F be their
joint distribution function. That is,

F1 (t)=pr (T1∏t), F2( t)=pr(T2∏t), F(t1 , t2 )=pr(T1∏t1 , T2∏t2 ).
For simplicity of description, we assume that F is continuous. Clearly, F(t1 , t2 )=
H(t1 , 0)−H(t1 , t2), where H(t1 , t2)=pr (T1∏t1 , T2>t2). Thus, we will have an estimator
for F if we know how to estimate H.
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If there were no censoring, then H(t1 , t2 ) could be estimated by

n−1 ∑
n

i=1
I(T

1i
∏t1 , T2i>t2). (1)

In the presence of censoring, one observes YB
1i
)T

1i
mC

i
and YB

2i
)(T

1i
+T

2i
)mC

i
instead

of T
1i

and T
2i

. Motivated by expression (1), we consider the indicator function
I(YB

1i
∏t1 , YB2i−YB

1i
>t2). Since YB

2i
−YB

1i
>0 implies that YB

1i
=T

1i
, we have

I(YB
1i
∏t1 , YB2i−YB

1i
>t2 )=I(T

1i
∏t1 , T2i>t2 , Ci

>T
1i
+t2 ). (2)

Thus,

E{I(YB
1i
∏t1 , YB 2i−YB

1i
>t2) |T1i , T2i}=I(T

1i
∏t1 , T2i>t2)G(T

1i
+t2 ), (3)

where G is the common survival function of the censoring time variable, that is G(t)=
pr (C>t). It follows from (3) that

E qI(YB1i∏t1 , YB2i−YB
1i
>t2 )

G(T
1i
+t2)

K T1i , T2ir=I(T
1i
∏t1 , T2i>t2 ), (4)

which indicates that

HB (t1 , t2 ))n−1 ∑
n

i=1
I(YB

1i
∏t1 , YB2i−YB

1i
>t2)

G(YB
1i
+t2)

would be an unbiased estimator of H(t1 , t2) if G were known. Therefore, we estimate
H(t1 , t2) by

HC ( t1 , t2))n−1 ∑
n

i=1
I(YB

1i
∏t1 , YB2i−YB

1i
>t2 )

GC (YB
1i
+t2)

,

where GC is the Kaplan–Meier estimator of G based on the data (YB
1i

, 1−d
1i

) (i=1, . . . , n)
or (YB

2i
, 1−d

2i
) (i=1, . . . , n). The corresponding estimator for F(t1 , t2 ) is

FC (t1 , t2 ))HC ( t1 , 0)−HC (t1 , t2 ).

In deriving equation (4) from (3), we implicitly assumed that the denominator G(T
1i
+t2)

is strictly positive for every i such that T
1i
∏t1 . This condition holds if t1+t2<t

c
, where

t
c
=sup{t : G(t)>0}. In fact, F(t1 , t2 ) and H(t1 , t2) are not estimable if t1+t2>t

c
. An

intuitive explanation for the non-estimability is as follows: if T1=t
c
−t2 , then T2 is observ-

able only when T2∏t2 , which implies that there is no information in the data to estimate
the probability of T2>t2 . As a result of this estimability constraint, the estimator HC (t1 , t2),
or any other potential estimator, is naturally confined to {(t1 , t2 ) : t1+t2<t

c
}. Obviously,

this constraint will be redundant if t
c
=2 or t

c
�t1+t2 , where t1=sup{t : F1(t)=1} and

t2=sup{t : F2 (t)=1}. It is well known that the Kaplan–Meier estimator for F1(t) can be
defined only up to t

c
.

Clearly, FC reduces to the usual empirical distribution function in the absence of cen-
soring. Note also that

FC (t, 2 )=HC (t, 0)=n−1 ∑
n

i=1
d
1i

I(YB
1i
∏t)

GC (YB
1i

)
. (5)

If GC is the Kaplan–Meier estimator of G calculated from (YB
1i

, 1−d
1i

) (i=1, . . . , n), then
(5) is the estimator of F1 (t) given by Susarla, Tsai & Van Ryzin (1984). It can be shown
that this estimator is identical to the Kaplan–Meier estimator of F1 .
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As discussed previously, in general F2 (t) is estimable only when t
c
>t1+t. Assume for

the moment that this condition holds. Then

HC (2, t)=n−1 ∑
n

i=1
I(YB

2i
−YB

1i
>t)

GC (YB
1i
+t)

(6)

is our estimator for S2( t))1−F2 (t). As a result of dependent censoring, the Kaplan–
Meier estimator for S2 is invalid unless T1 and T2 are independent. If T1 were a fixed
constant and thus independent of T2 , then the right-hand side of (6) with GC calculated
from (YB

2i
, 1−d

2i
) (i=1, . . . , n) would reduce to the Susarla–Tsai–Van Ryzin estimator of

S2 (t). It can be easily shown that the Susarla–Tsai–Van Ryzin and Kaplan–Meier esti-
mators have the same probability masses and that the latter accumulates masses forward
from 0 to 2 whereas the former does it backwards. Therefore, the two estimators are
identical when the last observation time is uncensored. This connection, as well as the
connections described in the previous paragraph, suggests that FC (t1 , t2 ) is a natural exten-
sion of the Kaplan–Meier approach to the estimation of the bivariate distribution function
of two gap times and is likely to have high efficiency.

When t
c
<t

1
+t, it is generally not possible to estimate the marginal distribution func-

tion F2 (t), but it is possible to estimate the conditional distribution function

F
2|1(t2 | t1 ))pr(T2∏t2 |T1∏t1)=F(t1 , t2)/F1(t1)

as long as t1+t2<t
c
. In fact, this conditional distribution may be of interest even when

F2 is estimable. Naturally, F2|1 (t2 | t1 ) is estimated by

FC
2|1 (t2 | t1))FC (t1 , t2 )/HC (t1 , 0)=1−HC (t1 , t2 )/HC (t1 , 0).

For definiteness, suppose that GC is constructed from (YB
2i

, 1−d
2i

) (i=1, . . . , n). We
show in the Appendix that the estimator FC is strongly consistent, and the process
nD{FC ( . , . )−F(., . )} converges weakly to a bivariate zero-mean Gaussian process with
covariance function

s(t1 , t2 ; t∞
1
, t∞
2
))E Cqd1I(YB1∏t1)

G(YB1 )
−

I(YB1∏t1 , YB2−YB 1>t2 )
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−F(t1 , t2 )r
×qd1I(YB1∏t∞

1
)

G(YB 1)
−

I(YB1∏t∞
1
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2
)

G(YB1+t∞
2
)

−F(t∞
1
, t∞
2
)rD

− P tc
0

D(t1 , t2 ; u)D(t∞
1
, t∞
2
; u) dL

c
(u)

pr (YB2>u)
, (7)

where D(t1 , t2 ; u)={F1(t1)−F1 (u)}+−{H(t1 , t2)−H(u−t2 , t2 )}+, and L
c
is the cumulat-

ive hazard function of C. A consistent estimator of s(t1 , t2 ; t∞
1
, t∞
2
) is

s@ (t1 , t2 ; t∞
1
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2
))n−1 ∑

n

i=1 Cqd
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)
−
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+t2)
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1
)

GC (YB
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)
−

I(YB
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1
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where DC (t1 , t2 ; u)={HC (t1 , 0)−HC (u, 0)}+−{HC (t1 , t2)−HC (u−t2 , t2 )}+. Furthermore, the
estimator FC2|1 is also strongly consistent, and nD{FC2|1 ( . , . )−F2|1 ( . , . )} converges weakly
to a zero-mean Gaussian process with a covariance function which can be consistently
estimated by
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| t1 ))
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∑
n
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×qHC (t∞2 | t1)GC (YB

1i
)
−

I(YB
2i
−YB

1i
>t∞

2
)

GC (YB
1i
+t∞

2
) r
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)D , (9)

where HC (t2 | t1)={HC ( t1 , t2)}/{HC (t1 , 0)},

BC (t1 , t2 ; u)=HC (t2 | t1 ){HC (t1 , 0)−HC (u, 0)}+−{HC (t1 , t2 )−HC (u−t2 , t2 )}+.

3. S 

Two sets of simulations were carried out to assess the finite-sample performance of the
joint distribution function estimator FC and conditional distribution function estimator
FC2|1 as well as their variance estimators. The gap times (T1 , T2) were generated from
Gumbel’s (1960) bivariate distribution function

F(t1 , t2)=F1 (t1 )F2( t2 )[1+h{1−F1(t1)}{1−F2 (t2 )}]

with unit exponential margins. The parameter h was set to 0 and 1 in the first and second
sets of simulations, respectively, corresponding to 0 and 0·25 correlation between T1 and
T2 . The follow-up time was subject to right censoring by an independent Un[0, 4] variable
so that about 25% of T1 and 50% of T2 were censored. In each simulation study, 10 000
samples were generated, each with 100 subjects.

Table 1 summarises the main findings of the simulations. For the joint distribution
function, the results are given at pairs of time points (t1 , t2 ), where t1 and t2 take values
0·2231, 0·5108, 0·9163 and 1·6094, corresponding to marginal survival probabilities of 0·8,
0·6, 0·4 and 0·2. At each (t1 , t2), both the estimator FC (t1 , t2) and its standard error estimator
appear to be unbiased. For the conditional distribution, the results are displayed at t2=
0·2231, 0·5108, 0·9163 or 1·6094 and t1=0·5108 or 1·6094. Again, both the estimator
FC2|1(t2 | t1 ) and its standard error estimator are virtually unbiased, although there seems
to be slight underestimation of the true variability at t2=1·6094.

4. A  

Each year, cancer of the colon afflicts over 100 000 persons in the United States. In
approximately 80% of the patients, the diagnosis is made at a sufficiently early stage when
all apparent diseased tissue can be surgically removed. Those who have regional nodal
involvement that is clinically completely resected are referred to as having Duke’s Stage C
disease. Unfortunately, about one-half of these patients have residual cancer existing in
an occult and probably microscopic stage, which leads to recurrence of disease and death
within 5 years. A recent clinical trial on Duke’s Stage C patients demonstrated that therapy
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Table 1. Simulation summary statistics for FC and FC2|1 under bivariate exponential models:
(a) true probabilities, (b) empirical means of estimated probabilities, (c) empirical standard

errors of estimated probabilities, and (d) empirical means of standard error estimates

Independent gap times Dependent gap times

t2= t2=
t1 0·2231 0·5018 0·9163 1·6094 0·2231 0·5108 0·9163 1·6094

FC (t1 , t2 ) 0·2231 (a) 0·04 0·08 0·12 0·16 0·066 0·118 0·158 0·186
(b) 0·040 0·080 0·120 0·160 0·066 0·118 0·158 0·185

(c) 0·022 0·031 0·036 0·041 0·027 0·034 0·038 0·040
(d) 0·021 0·030 0·036 0·040 0·026 0·034 0·038 0·040

0·5108 (a) 0·08 0·16 0·24 0·32 0·118 0·218 0·298 0·358

(b) 0·080 0·160 0·240 0·320 0·118 0·218 0·297 0·358
(c) 0·031 0·043 0·050 0·055 0·035 0·045 0·050 0·053
(d) 0·031 0·042 0·049 0·054 0·035 0·045 0·050 0·053

0·9163 (a) 0·12 0·24 0·36 0·48 0·158 0·298 0·418 0·518
(b) 0·120 0·240 0·360 0·480 0·158 0·297 0·417 0·518
(c) 0·039 0·052 0·059 0·063 0·042 0·053 0·058 0·061

(d) 0·039 0·051 0·058 0·062 0·042 0·053 0·058 0·060

1·6094 (a) 0·16 0·32 0·48 0·64 0·186 0·358 0·518 0·666
(b) 0·160 0·320 0·481 0·640 0·185 0·357 0·517 0·664

(c) 0·047 0·062 0·069 0·071 0·048 0·061 0·067 0·069
(d) 0·064 0·061 0·068 0·069 0·048 0·061 0·067 0·068

FC2|1 (t2 | t1 ) 0·5108 (a) 0·2 0·4 0·6 0·8 0·296 0·544 0·744 0·896
(b) 0·200 0·399 0·600 0·800 0·297 0·545 0·744 0·896

(c) 0·074 0·094 0·098 0·089 0·082 0·092 0·085 0·068
(d) 0·073 0·091 0·096 0·086 0·080 0·090 0·083 0·061

1·6094 (a) 0·2 0·4 0·6 0·8 0·232 0·448 0·648 0·832

(b) 0·200 0·400 0·600 0·800 0·231 0·447 0·646 0·830
(c) 0·057 0·071 0·075 0·072 0·058 0·070 0·072 0·070
(d) 0·056 0·070 0·073 0·068 0·057 0·070 0·072 0·066

with levamisole plus fluorouracil delayed the time to cancer recurrence as well as time to
death as measured from the time of randomisation (Moertel et al., 1990). An important
issue that was not addressed by the investigators is whether or not therapy had any benefit
on survival after cancer recurrence. The methods developed in this paper were motivated
by the need to answer such questions.

There were 315 and 304 patients in the observation and therapy groups, respectively.
The database available for this analysis contains considerably richer long-term information
than that used in the original report, with maximum follow-up time of more than 8 years.
By the end of the study, 177 patients in the observation group had cancer recurrence,
among whom 155 died, while in the therapy group 119 patients had cancer recurrence,
among whom 108 died. Figures 1(a) and (b) display the Kaplan–Meier estimates for the
cumulative probabilities of cancer recurrence and death. The observed chi-squared values
of the log-rank statistics are 19·1 and 11·2 for cancer recurrence and death, respectively,
providing strong evidence for the benefit of therapy.

Under the proposed framework for analysing gap times, T1 is the time from randomis-
ation to cancer recurrence and T2 is the time from cancer recurrence to death. Table 2
presents the estimates for the joint distribution function F(t1 , t2) and the conditional
distribution function F2|1( t2 | t1 ) for t1=1, 2, 3, 4, 5 years and t2=1, 2, 3 years. The joint
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Fig. 1. Nonparametric estimation of the cumulative probabilities of cancer recurrence and death in the colon
cancer study: (a) Kaplan–Meier estimates for the cumulative probabilities of cancer recurrence since
randomisation, (b) Kaplan–Meier estimates for the cumulative probabilities of death since randomisation,
(c) proposed estimates for the cumulative probabilities of death since cancer recurrence. The estimates for
the observation group are shown by the solid curves and those of the therapy group by the dotted curves.

distribution function estimates of the observation group are considerably higher than
those of the therapy group. However, the opposite is true for the conditional distribution
function. For each t2 , a smaller value of t1 tends to be associated with a higher value of
FC2|1(t2 | t1 ), which suggests a positive correlation between T1 and T2 . As evident from
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Fig. 1(a), cancer recurrence normally takes place within 5 years it at all. Thus, we use
FC2|1(t2 | t1 ) evaluated at t1=5 to estimate the marginal distribution of T2 . Figure 1(c) shows
these estimates when t2 varies continuously between 1 and 3 years. Evidently, nearly 90%
of the patients who suffered from cancer recurrence died within 3 years of recurrence.
More importantly, the patients who were on therapy died faster after cancer recurrence
compared to those in the observation group. This suggests that the benefit of therapy may
not outweigh its risk or toxicities after cancer recurrence.

Table 2. Estimates of the joint and conditional distribution functions for the colon cancer
study. Standard error estimates are given in parentheses

FC (t1 , t2 ) FC2|1 (t2 , t1 )
Therapy t2=1 t2=2 t3=3 t2=1 t2=2 t3=3

t1=1 t1=1

No 0·151 (0·020) 0·231 (0·024) 0·263 (0·025) 0·547 (0·054) 0·835 (0·040) 0·952 (0·023)
Yes 0·116 (0·018) 0·146 (0·020) 0·149 (0·021) 0·742 (0·064) 0·935 (0·036) 0·957 (0·030)

t1=2 t1=2

No 0·198 (0·023) 0·316 (0·026) 0·384 (0·028) 0·470 (0·044) 0·751 (0·038) 0·913 (0·025)
Yes 0·185 (0·022) 0·252 (0·025) 0·265 (0·026) 0·633 (0·052) 0·862 (0·037) 0·906 (0·032)

t1=3 t1=3

No 0·213 (0·023) 0·351 (0·027) 0·425 (0·028) 0·439 (0·041) 0·723 (0·037) 0·876 (0·028)
Yes 0·199 (0·023) 0·286 (0·026) 0·305 (0·027) 0·590 (0·049) 0·849 (0·036) 0·905 (0·030)

t1=4 t1=4

No 0·216 (0·023) 0·364 (0·028) 0·450 (0·029) 0·417 (0·039) 0·703 (0·037) 0·868 (0·031)

Yes 0·202 (0·023) 0·298 (0·027) 0·317 (0·028) 0·565 (0·048) 0·836 (0·037) 0·889 (0·035)

t1=5 t1=5

No 0·221 (0·024) 0·364 (0·028) 0·473 (0·029) 0·409 (0·038) 0·667 (0·041) 0·873 (0·030)

Yes 0·212 (0·024) 0·316 (0·027) 0·335 (0·028) 0·566 (0·047) 0·843 (0·035) 0·894 (0·034)

5. R

This paper provides a surprisingly simple solution to a long-standing problem. Recently,
Wang & Wells (1998) proposed an estimator for the bivariate survival function of (T1 , T2 )
by estimating the cumulative conditional hazard of T2 given T1>t1 . The estimator was
shown to be consistent and asymptotically normal, but no analytical variance expression
was given. In an unpublished paper, M. C. Wang and S. H. Chang studied an estimator
for a recurrent survival function under the restrictive condition that the gap times of the
recurrent events have the same marginal distribution.

Our method, as well as those of Wang & Wells and Wang & Chang, requires the
censoring time C to be completely independent of the gap times (T1 , T2 , . . . , TK). This
could be a practical limitation in some contexts. The method by Visser (1996), on the
other hand, can deal with situations where censoring may depend upon previous gap
times, but his method relies on estimating the cumulative conditional hazard of T2 given
T1=t1 and requires discrete censoring time and gap times.

The estimator FC (t1 , t2 ) is not always a proper distribution function in that it may have
negative mass points, though it converges to a proper distribution function as n�2. It
is difficult to deal with the issue of negative mass for the bivariate estimation with censored
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data, even for the simpler case of parallel events; see Pruitt (1991). However, it is easy to
obtain proper estimators of the marginal distribution functions. The estimator FC (t, 2) for
F1 (t) shown in (5) is clearly a proper distribution function. We can modify the estimator
HC (2, t) given in (6) to produce a proper estimator for 1−F2(t) while preserving the
desired asymptotic properties. Specifically, let HC (2, 0)=1 and HC *(2, t)=inf

s∏tHC (2, s).
Then, HC *(2, t) is a proper survival function. Furthermore, by the arguments of Lin &
Ying (1994, pp. 64–5), the difference between HC (2, t) and HC *(2, t) is of order o(n−D ) so
that HC *(2, t) has the same limiting distribution as HC (2, t). A similar modification can
be made to FC2|1 .

The nonparametric estimators such as FC and FC2|1 are not only important in their own
right, but also have many statistical applications. As evident in § 4, it is often of interest
to compare the gap time distributions between two or more groups. The estimators FC
and FC2|1 and their variance estimators enable one to make such comparisons at a fixed
time point or at a given set of time points. To compare the entire distributions, it is
desirable to perform Kolmogorov–Smirnov-type or log-rank-type tests. We are currently
exploring the use of the proposed nonparametric estimators in constructing such tests, in
assessing the degree of dependence between gap times and in semiparametric regression
analysis.

It is straightforward to extend the results of § 2 to the general case of K events. Let t:=
(t1 , . . . , tK), t:0= (t1 , . . . , tK−1 , 0),

H(t:)=pr(T1∏t1 , . . . , TK−1∏t
K−1 , TK>t

K
), F(t: )=pr (T1∏t1 , . . . , TK∏t

K
).

Clearly, F(t:)=H(t:0)−H(t:). We estimate H(t:) by HC (t:))n−1 Wn
i=1HC i(t:), where

HC
i
(t:)=

I(YB
1i
∏t1 , YB 2i−YB

1i
∏t2 , . . . , YBK−1,i−YB

K−2,i∏t
K−1 , YBKi−YB

K−1,i>t
K
)

GC (YB
K−1,i+t

K
)

,

and GC is the Kaplan–Meier estimator of G based on (YB
Ki

, 1−d
Ki

) (i=1, . . . , n). We then
estimate F(t:) by FC (t:))HC (t:0 )−HC (t:). Using the techniques given in the Appendix, we can
show that nD{HC (t:)−H(t:)} converges weakly to a K-variate zero-mean Gaussian process
with a simple covariance function. From this result, we can also show that nD{FC (t:)−F(t:)}
converges weakly to a zero-mean Gaussian process with a covariance function which can
be consistently estimated by

n−1 ∑
n

i=1 C{HC i( t:0)−HC
i
(t:)−FC (t:)}{HC i (t:∞0 )−HC

i
(t:∞)−FC (t:∞)}

−
(1−d

Ki
)DC ( t:; YB

Ki
)DC (t:∞; YB

Ki
)

n−2{1+Wn
j=1 I(YB

Kj
>YB

Ki
)}Wn

l=1 I(YB
Kl
�YB

Ki
)D ,

where DC (t:; u)=n−1 ∑n
i=1 {HC i(t:0)I(YBK−1,i�u)−HC

i
(t:)I(YB

K−1,i�u−t
K
)}.
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A

Asymptotic properties of the estimators

As argued in § 2, HC is an unbiased estimator of H. It follows from the strong law of large numbers
and the strong consistency of the Kaplan–Meier estimator GC (Shorack & Wellner, 1986, pp. 304–6)
that HC is strongly consistent, which implies that FC and FC2|1 are strongly consistent.

It is crucial to study the weak convergence of W (t1 , t2 ))nD{HC (t1 , t2)−H(t1 , t2 )} since both FC
and FC2|1 are functionals of HC . Clearly,

W (t1 , t2 )=nD{HB (t1 , t2 )−H(t1 , t2 )}+nD{HC (t1 , t2 )−HB (t1 , t2 )}.

In view of (2),

nD{HB (t1 , t2 )−H(t1 , t2 )}=n−D ∑
n

i=1 qI(T1i∏t1 , T2i>t2 , Ci
>T

1i
+t2 )

G(T
1i
+t2 )

−H(t1 , t2 )r , (A1)

nD{HC (t1 , t2 )−HB (t1 , t2 )}=n−D ∑
n

i=1
I(T

1i
∏t1 , T2i>t2 , Ci

>T
1i
+t2 )

×qG(T
1i
+t

2
)−GC (T

1i
+t

2
)

G(T
1i
+t

2
)GC (T

1i
+t

2
) r . (A2)

By a martingale representation for the Kaplan–Meier estimator (Fleming & Harrington, 1991,
p. 97),

G(t)−GC (t)
G(t)

= P t
0

GC (u−)

G(u)

Wn
i=1 dMc

i
(u)

Wn
i=1 I(YB

2i
�u)

, t∏ max
1∏i∏n

YB
2i

,

where

Mc
i
(t)=I(C

i
∏tmY

2i
)− P t

0
I(YB

2i
�u) dL

c
(u).

Thus, (A2) can be written as

nD{HC ( t1 , t2 )−HB (t1 , t2 )}=n−D P tc
0
qn−1 ∑

n

i=1
I(T

1i
∏t1 , T2i>t2 , Ci

>T
1i
+t2 )I(T1i�u−t2 )

GC (T
1i
+t2 ) r

×
GC (u−)

G(u)

Wn
j=1 dMc

j
(u)

n−1 Wn
j=1 I(YB

2j
�u)

+o
p
(1)

=n−D ∑
n

i=1 P tc0 {H(t1 , t2 )−H(u−t2 , t2 )}+
pr (YB 2>u)

dMc
i
(u)+o

p
(1),

where the second equality follows from the consistency of HC and GC , the continuity of H and the
fact that G(u−)/{G(u) pr(YB 2�u)}=1/pr (YB2>u).

Combining the preceding result with (A1), we have

W (t1 , t2 )=n−D ∑
n

i=1 qI(T
1i
∏t1 , T2i>t2 , Ci

>T
1i
+t2 )

G(T
1i
+t2 )

−H(t1 , t2 )r
+n−D ∑

n

i=1 P tc0 {H(t1 , t2 )−H(u−t2 , t2 )}+
pr (YB 2>u)

dMc
i
(u)+o

p
(1), (A3)

which is a sum of n independent and identically distributed zero-mean random variables. By the
multivariate central limit theorem, W (t1 , t2 ) converges in finite-dimensional distributions to a zero-
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mean Gaussian process with covariance function

s
H
(t1 , t2 ; t∞

1
, t∞
2
)

=E CI(T1∏t1 , T2>t2 , C>T1+t2 )
G(T1+t2 )

−H(t1 , t2 )+ P tc
0

{H(t1 , t2 )−H(u−t2 , t2 )}+
pr(YB 2>u)

dMc(u)D
×CI(T1∏t∞

1
, T2>t∞

2
, C>T1+t∞

2
)

G(T1+t∞
2
)

−H(t∞
1
, t∞
2
)+ P tc

0

{H(t∞
1
, t∞
2
)−H(u−t∞

2
, t∞
2
)}+

pr (YB2>u)
dMc(u)D

=E CqI(T1∏t1 , T2>t2 , C>T1+t2 )
G(T1+t2 )

−H(t1 , t2 )r qI(T1∏t∞
1
, T2>t∞

2
, C>T1+t∞

2
)

G(T1+t∞
2
)

−H(t∞
1
, t∞
2
)rD

+ P tc
0

{H(t1 , t2 )−H(u−t2 , t2 )}+{H(t∞
1
, t∞
2
)−H(u−t∞

2
, t∞
2
)}+

{pr (YB
2
>u)}2

pr (YB2�u){1−DL
c
(u)} dL

c
(u)

−E CI(T1∏t1 , T2>t2 , C>T1+t2 )
G(T1+t2 )

P T1+t2
0

{H(t∞
1
, t∞
2
)−H(u−t∞

2
, t∞
2
)}+

pr (YB 2>u)
I(YB 2�u) dL

c
(u)D

−E CI(T1∏t∞
1
, T2>t∞

2
, C>T1+t∞

2
)

G(T1+t∞
2
) P T1+t∞2

0

{H(t1 , t2 )−H(u−t2 , t2 )}+
pr(YB 2>u)

I(YB2�u) dL
c
(u)D

=E CqI(T1∏t1 , T2>t2 , C>T1+t2 )
G(T1+t2 )

−H(t1 , t2 )r qI(T1∏t∞
1
, T2>t∞

2
, C>T1+t∞

2
)

G(T1+t∞
2
)

−H(t∞
1
, t∞
2
)rD

− P tc
0

{H(t1 , t2 )−H(u−t2 , t2 )}+{H(t∞
1
, t∞
2
)−H(u−t∞

2
, t∞
2
)}+

pr (YB 2>u)
dL

c
(u).

Note that familiar results for martingale integrals (Fleming & Harrington, 1991, Theorem 2.6.2)
were used to obtain the second equality.

To complete the weak convergence proof, we need to establish the tightness of W. It suffices to
show the tightness of the right-hand side of (A3). By the functional central limit theorem (Pollard,
1990, p. 53), the tightness of the first term reduces to the manageability of

{n−DI(T
1i
∏t1 , T2i>t2 , Ci

>T
1i
+t2 )/G(T

1i
+t2 ); i=1, . . . , n}.

However, the manageability is a direct consequence of the fact that each of these n terms can be
written as a product of four monotone functions of t1 or t2 . For the tightness of the second term,
we note that, via the integration-by-parts formula, it suffices to show the weak convergence of

P tc
0

n−D ∑
n

i=1
Mc

i
(u) d[{H(t1 , t2 )−H(u−t2 , t2 )}+/pr (YB 2>u)].

This follows from the facts that the integrand, which is a martingale process, converges weakly
(Fleming & Harrington, 1991, Theorem 5.3.5) and that the integral with the integrand replaced by
its limiting process is continuous in t1 and t2 .

Since FC (t1 , t2 )=HC (t1 , 0)−HC (t1 , t2 ), the weak convergence for FC follows immediately from that
of W. By the arguments used in evaluating s

H
, it can be shown that (7) is indeed the covariance

function for FC . It is natural to estimate s(t1 , t2 ; t∞
1
, t∞
2
) by

s@ (t1 , t2 : t∞
1
, t∞
2
))n−1 ∑

n

i=1 qd
1i

I(YB
1i
∏t1 )

GC (YB
1i

)
−

I(YB
1i
∏t1 , YB2i−YB

1i
>t2 )

GC (YB
1i
+t2 )

−FC (t1 , t2 )r
×qd

1i
I(YB

1i
∏t∞

1
)

GC (YB
1i

)
−

I(YB
1i
∏t∞

1
, YB

2i
−YB

1i
>t∞

2
)

GC (YB
1i
+t∞

2
)

−FC (t∞
1
, t∞
2
)r

− P tc
0

DC (t1 , t2 ; u)DC (t∞
1
, t∞
2
; u) dLC

c
(u)

n−1{1+Wn
j=1 I(YB

2j
>u)}

, (A4)
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which is obtained by replacing the unknown parameters on the right-hand side of (7) by their
respective sample estimators. Here,

LC
c
(t)) P t

0

Wn
i=1 (1−d

2i
) dI(YB

2i
∏u)

Wn
j=1 I(YB

2j
�u)

is the Nelson–Aalen estimator for L
c
( t) based on (YB

2i
, 1−d

2i
) (i=1, . . . , n). Note that we estimate

pr(YB 2>u) by n−1{1+W I(YB
2j
>u)} rather than n−1W I(YB

2j
>u) to avoid the possibility of having a

zero denominator in (A4). It is easy to see that (A4) equals (8). The strong law of large numbers,
together with the strong consistency of HC , GC and LC

c
, implies that s@ is a consistent estimator of s.

It is straightforward to show that

nD{FC
2|1 (t2 | t1 )−F

2|1 (t2 | t1 )}=
nD

F1 (t1 )
[{1−F

2|1 (t2 | t1 )}{HC (t1 , 0)−H(t1 , 0)}

−{HC (t1 , t2 )−H(t1 , t2 )}]+o
p
(1),

which indicates that the weak convergence for FC2|1 also follows directly from that of W. In addition,
calculations similar to those used in deriving s

H
produce the limiting covariance function

s(t2 ; t∞
2
| t1 ))

1

F2
1
(t1 ) AE CqH(t2 | t1)

d1I(YB 1∏t1 )
G(YB1 )

−
I(YB 1∏t1 , YB 2−YB 1>t2 )

G(YB1+t2 ) r
×qH(t∞

2
| t1 )

d1I(YB1∏t1 )
G(YB 1 )

−
I(YB 1∏t1 , YB 2−YB 1>t∞

2
)

G(YB 1+t∞
2
) rD

− P tc
0

B(t1 , t2 ; u)B(t1 , t∞2 ; u) dL
c
(u)

pr (YB 2>u) B , (A5)

where H(t2 | t1 )=H(t1 , t2 )/F1 (t1 ) and

B(t1 , t2 ; u)=H(t2 | t1 ){F1 (t1 )−F1 (u)}+−{H(t1 , t2 )−H(u−t2 , t2 )}+.

Replacement of the unknown parameters in (A5) by their respective sample estimators yields
formula (9).
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