The Robust Inference for the Cox Proportional Hazards Model

D. Y. Lin; L. J. Wei

Journal of the American Statistical Association, Vol. 84, No. 408. (Dec., 1989), pp.
1074-1078.

Stable URL:
http://links jstor.org/sici?sici=0162-1459%28198912%2984%3 A408%3C1074%3 ATRIFTC%3E2.0.CO%3B2-X

Journal of the American Statistical Association is currently published by American Statistical Association.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/astata.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Fri May 12 14:49:30 2006



The Robust Inference for the Cox Proportional

D. Y. LIN and L. J. WEI*

Hazards Model

We derive the asymptotic distribution of the maximum partial likelihood estimator § for the vector of regression coefficients
B under a possibly misspecified Cox proportional hazards model. As in the parametric setting, this estimator B converges to a
well-defined constant vector #*. In addition, the random vector n'2(f — §*) is asymptotically normal with mean 0 and with a
covariance matrix that can be consistently estimated. The newly proposed robust covariance matrix estimator is similar to the
so-called “sandwich” variance estimators that have been extensively studied for parametric cases. For many misspecified Cox
models, the asymptotic limit * or part of it can be interpreted meaningfully. In those circumstances, valid statistical inferences
about the corresponding covariate effects can be drawn based on the aforementioned asymptotic theory of § and the related
results for the score statistics. Extensive studies demonstrate that the proposed robust tests and interval estimation procedures
are appropriate for practical use. In particular, the robust score tests perform quite well even for small samples. In contrast,
the conventional model-based inference procedures often lead to tests with supranominal size and confidence intervals with

rather poor coverage probability.

KEY WORDS: Asymptotic theory; Model misspecification; Partial likelihood; Regression; Robustness; Survival data.

1. INTRODUCTION

The Cox proportional hazards model assumes that the
hazard function A(¢) for the failure time 7 of an individual

with a p vector of covariates Z(t) = (Z(t), . . . , Z,(1))'
has the following form:
AMt; Z) = Ao(t)exp{B'Z()}, (1.1)

where f = (B, . .. , B,) is a p vector of unknown regres-
sion coefficients and Ay(¢) is an unspecified baseline hazard
function. Let X;, . .. , X, be n possibly right-censored
failure times, and let Z;, . . . , Z, be the corresponding
covariate vectors, where Z; is observed on [0, X;]. The
censorlng is assumed to be noninformative. Then the max-
imum partial likelihood estimator § is the value that max-
imizes the partial likelihood function (Cox 1972, 1975)

_ [ _exofpzxy 1
Lh =11 [zjegiexp{ﬁ'z,-(x,-)}] ’

where Q; is the set of labels attached to the individuals at
risk at time X;—, and §; = 1 if X; is an observed failure
time and §; = 0 otherwise.

Now, let A(ﬁ) = —n~'9%log L(B)/af*. If the assumed
Model (1.1) is correct, then n'2(f — B) converges in dis-
tribution to a p-dimensional normal vector with mean 0
and with a covariance matrix that can be consistently es-
timated by A-'(f) (see Andersen and Gill 1982).

The consequences of misspecifying the Cox model have
been extensively investigated in recent years (see Gail,
Wieand, and Piantadosi 1984; Lagakos 1988; Lagakos and
Schoenfeld 1984; Morgan 1986; O’Neill 1986; Solomon
1984; Struthers and Kalbfleisch 1986). Whgn the assumed
Model (1.1) is incorrect, the estimator f converges to

(1.2)
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a well-defined constant vector f* (see Struthers and
Kalbfleisch 1986). In many cases, f* or part of it can be
interpreted meaningfully. For example, suppose that the
true hazard function takes the form 4,(¢)exp(yZ?), where
Z is symmetric about 0, y is a constant, and ,(f) is a
baseline hazard function. Let the assumed model be
Ao(t)exp(BZ). Then it can be shown that the asymp-
totic limit f* of § is 0 provided that the censoring of
responses acts independently of Z. In this case, it is pos-
sible to construct a valid test based on § for testing the
null hypothesis that there is no linear effect of Z on the
fallure time. As will be shown in Section 3, however,

1(ﬂ) does not provide a proper variance estimator of
nl/2ﬁ

In the parametric setting, a number of techniques have
been suggested for handling misspecified models (e.g.,
Gail, Tan, and Piantadosi 1988; Huber 1967; Kent 1982;
Royall 1986; White 1982). As an illustration, suppose that
we are interested in testing the null hypothesis H, of no
treatment effect in a randomized clinical trial comparing
a treatment and a control. Let 7 and y denote, respec-
tively, the parameters representing the effects of treatment
and covariates in a working parametric model. In addition,
let 6 = (7, w), and let 6 be the maximum likelihood
estimator of 6 from the log-likelihood function I(6)
under the working model. In addition, denote A(0) =
—n‘lazl(f))/af)2 and B(6) = n~' T U(O)U/(#), where
Uy(0) is the contribution from the ith observation to the
score function U() = 9l(6)/36. Then, under some mild
regularity conditions, § converges to a well-defined con-
stant vector 0* = (¢*, y*), and n*2(f — 0*) is asymp-
totically normal with zero mean and with a covariance
matrlx that can be consistently estimated by V@) =

A-1(0)B(6)A-(0), the so-called “sandw1ch” estimator.
For many misspecified parametric models, 7* = 0 under
H,. This is true, for example, when some relevant covari-
ates are omitted from a generalized linear model (see Gail
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et al. 1984). In such situations, H, can be expressed as t
= 0 in the working model.

Next, let V(z, ), A(z, v), Uz, v), and U(z, v) be
partitioned according to the partition (z, y) of 0; that is,

% = Vrr T, '/’) Vr (Tv W) = Ui(z, 14

Ve = [FEn ] vew = [gE]
and so on. Then the robust Wald test and score test (also
called C, test) for testing H, are, respectively, Hi?/
V"(r, ) and U0, Wo)/Z {U.(0, ) A0,
z//o)A 70, ¥o)U,, (0, o)}, where i, is the restricted max-
imum likelihood estimator of y given t = 0. It is inter-
esting to note that the robust score test can be interpreted
as a permutation test based on the residuals computed
from the regression on covariates, but not on treatment
(see Gail et al. 1988).

In this article, various robust procedures similar to those
for parametric models are proposed and evaluated for Cox’s
semiparametric model. In Section 2, we derive the asymp-
totic distribution of the maximum partial likelihood esti-
mator when Model (1.1) may be misspecified. The random
vector n'2(f — B*) is shown to be asymptotically normal
with mean 0 and with a covariance matrix that generally
differs from the asymptotic limit of A~'(8). A consistent
variance—covariance estimator is suggested. In Section 3,
valid Wald and score statistics are presented for misspeci-
fied Cox models. Extensive empirical studies demonstrate
the superior performance of the robust procedures over
their model-based counterparts.

2. ASYMPTOTIC PROPERTIES OF THE MAXIMUM
PARTIAL LIKELIHOOD ESTIMATOR

For the ith individual, let 4,(¢) be the true hazard func-
tion, and Y;(¢) = HX; = t}, where I{-} is the indicator
function. We assume throughout the article that (X;, J;,
Z)(i=1,...,n)areniid realizations of (X, J, Z), that
Z is bounded, and that the support of the failure time T
properly contains that of the censoring variable.

It is convenient to introduce the following notation

§O@) = n~! Z Y(OALOZ O,  s9() = E{SO@)},

SO(B, 1) = 113, YiO)exp(B Z(OVZ(H,

and
sO(B, t) = E{SO(B, 1)},

for r = 0, 1, 2, where for a column vector a, a®? refers to
the matrix aa’, a®! refers to the vector a, and a®° refers
to the scalar 1 and the expectations are taken with respect
to the true model of (X, 0;, Z) (i = 1, ..., n).
Let (1.1) be the working model for (X;, d;, Z)) (i = 1,
, n). The logarithm of the partial likelihood function
(1.2) can be expressed as

Ip = ; OB Zi(X;) — log{SO(B, X)}].
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The corresponding score function is

— S _ S(l)(ﬁ’ Xx)}
v = 30 {200 - Foa}
The maximum partial likelihood estimator § is the solution
to the system of equations U(f) = 0.

The asymptotic properties of the maximum partial like-
lihood estimator # when the assumed Cox model (1.1) is
valid have been studied, for example, by Tsiatis (1981),
Andersen and Gill (1982), Nas (1982), and Bailey (1983).
Here, we derive the asymptotic distribution of n'28
when Model (1.1) may be incorrect. By the techniques
used in the proofs of lemma 3.1 and theorem 4.2 of An-
dersen and Gill (1982), one can easily show that B con-
verges in probability to a p vector of constants f*. Here,
B* is the unique solution to the system of equations

SUB D coey de = o,

oo w0

provided that A(f*) is positive definite, where

_[sPB0  sOB 0%
Ap) = | {s<°>(/f 3L t)z}s( @) dr.

The foregoing result is a multivariate generalization of
theorem 2.1 of Struthers and Kalbfleisch (1986). The pos-
itive-definiteness of A(B*) is assumed in the sequel. If
Model (1.1) is correct, then f* = fand A(f)is a consistent
estimator of A(f).

Now, let

2.1)

S(l)(ﬁ’ Xl)}
SO(B, X)

B i 3, Yi(X)exp{B' Z{(X)}
j=1 nSO(B, X;)

SO(B, X))
x {Z‘(X") - s<°>§/3, X,.)} :

In addition, let B() = n~! = W,(B)®, and let V() =
A-Y(B)B(B)A-'(B). The large-sample properties of the
maximum partial likelihood estimator f under a possi-
bly misspecified Cox model are given in the following theo-
rem.

Theorem 2.1. The random vector n'2(f — ﬁ*) is
asymptotically normal with mean 0 and with a covariance
matrix that can be consistently estimated by V(f).

The proof of Theorem 2.1 is provided in the Appendix.
Notice that the robust variance—covariance estimator
V(p) for the Cox model is rather similar to its parametric
counterpart V() described in Section 1. The key differ-
ence is that the matrix B(f) in V(,B) takes a more com-
plicated form than the corresponding B(0) in V(0) because
the score function is not a sum of 7 iid random vectors in
a partial likelihood setting.

3. ROBUST STATISTICAL INFERENCE

In this section, we demonstrate by several examples that
the statistical procedures based on the maximum partial

WiB) = 6, {z,-(x,-> -
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likelihood estimator f and the robust variance~covariance
estimator V(f) are appropriate for practical use under a
wide range of misspecified Cox models. On the other hand,
the procedures with the model-based variance-covariance
estimator A~!($) have some undesirable properties. The
related score statistics are also studied.

Suppose that one is interested in testing the null hy-
pothesis H, that the failure time T does not depend on
Z(t), the first component of the covariate vector Z(t).
When the assumed model (1.1) is true, a valid test statis-
tic for H, can be constructed based on ﬁl, with the vari-
ance estimator derived from either A~1(8) or V(f). When
Model (1.1) is false, a vahd test for H, based on ﬂ1 is
possible if the limit g of f§, is still 0 under H,. Here, we
provide two important examples of model misspecification
in which this condition is satisfied. For simplicity, let us
assume that there are no censored observations in the data.
Recall that * is the unique solution to the system of p
equations (2.1). Now, fork = 1, . . ., p, let s{(B, t) and
s{)(¢) be the kth components of sO(B, ¢) and sO(f), re-
spectively. Then for g = 0, there exist (p — 1) constants
B3, ..., B¥ that uniquely solve the following (p — 1)
equations under Hy:

[0 ar - [0
0 0
k=2,...,p.

sO(B*, 1)
Thus, to show that (0, B3, . . ., ;) is the solution to the
system of p equations (2.1) under H,, it is sufficient to
verify that 8f = 0 satisfies the following condition under
sP(B*, )

Ho:
[} saya- | SO(8%, 1)

In our first example, suppose that Z,(¢) is independent
of all other relevant covariates, some of which may be
mistakenly omitted from the model. The true model need
not take an exponential regression form, and neither does
it have to be a proportional hazards model. Then, under
Hy, s{(t) = s E{Z,(t)} and s{(B*, 1) = sO(B*, ) E{Z,(1)}
when ff = 0; therefore, (3.1) is satisfied. In the second
example, suppose that Z;(¢) is symmetric about 0 and that
Z}(t) has an important effect on the hazard function A(¢)
but is mistakenly omitted. Other relevant covariates are
assumed to be independent of Z,(¢) and may also be omit-
ted from the model. The true model may have a nonex-
ponential regression form, or it may be a nonpropor-
tional hazards model. Here, it is easy to show that for
B¥ = 0, s{(B*, t) = s{(¢) = 0 under H,. Again, (3.1) is
satisfied.

For these two examples of model mlsspemflcatlon the
Wald test for testing H, based on f, and V(f) is asymp-
totlcally valid, whereas its model-based counterpart with

A-'(f) may not be. Now, for the corresponding score
tests, let U(B,, 1), Wi(Bi, 1), and A(B,, ) be partltloned
according to the partition (8, #) of §. In addition, let #,
denote the restricted maximum partial likelihood esti-
mator of # given f; = 0. Then, the model-based and the

sO@) dt = 0,

sO@)dt =0. (3.1)
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robust score tests for H, are, respectively, n~'Uj (0,
Ang O ) = Apy(O, 10} Ar O, 1) Aj(0, 7)) and

U3(0, 7o)/ 2 {Wis, (0, 70) — Aﬁ],,(O no)A,,,, (0, 7o) Wy(0,
:70)}2 These procedures were derived from the arguments
given in the Appendix and in Cox and Hinkley (1974, pp.
321-324).

Extensive empirical studies have been conducted to
evaluate the properties of the model-based and the robust
tests for practical sample sizes. Some results from these
studies are displayed in Table 1. Rows 1-4 of the table
are on the omission of relevant covariates from Cox models,
rows 5~8 are on the misspecification of regression forms
with possible omission of relevant covariates, and rows 9—
12 are on nonproportional hazards models also with pos-
sible omission of relevant covariates. It is interesting to
observe that the model-based Wald and score tests are
comparable. These conventional tests seem to retain near
nominal size when an independent covariate is omitted
from a Cox model, which confirms the findings of Lagakos
and Schoenfeld (1984). Their size, however, often well
exceeds the nominal level when an uncorrelated but de-
pendent covariate is omitted from a Cox model or when
the true model is not in a proportional hazards form. One
may notice that these tests can be rather conservative when
the regression form is incorrect. In all of the cases studied
here, the robust Wald and score tests maintain their size
near the nominal level, especially for large samples. The
robust score test tends to perform better than its Wald
counterpart. Additional Monte Carlo studies not shown
here have indicated that the behavior of the robust score
test is fairly satisfactory, even for small samples such as
n = 20. These findings suggest that the robust score test
be used in practice.

Under certain misspecified Cox models, it is meaningful
to make the quantitative inferences about the covariate
effects on the failure time. For example, suppose that we
work under Model (1.1) but the true model is of the form
At) = M()exp(y'Z + &'C), where the omitted covariate
vector C is uncorrelated with Z. Then it is interesting to
estimate the effect of, say Z;, on the failure time. Ob-
viously, an asymptotically valid confidence interval for the
regress1on coefficient y; of Z, can be constructed based on
B, and V(B) as long as B} = y,. This condition is satisfied,
for instance, in rows 1-4 of Table 1. Notice that the size
of a Wald test is the complement of the coverage proba-
bility of the corresponding Wald-type confidence interval.
Thus, in rows 2—4 of Table 1, the confidence intervals with
V( ) have proper coverage probability, whereas those with

A-1(§) do not. It should be pointed out that f; is generally
unequal to y; when y, # 0. However, our extensive nu-
merical studies not shown here have indicated that
the difference between f;* and y, is small unless ||&]| is rela-
tively large, which confirms the findings of Struthers and
Kalbfleisch (1986). In addition, the confidence intervals
based on $, and V(B) tend to provide better coverage
probability than their model-based counterparts for non-
zero y,, especially when an uncorrelated but dependent
important covariate is omitted from a Cox model (see Lin
1989).
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Table 1. Empirical Size of the Model-Based and the Robust Statistics for Testing the Effect of Z, Under the Falsely Assumed Cox Model

AMt; Zy, Z,) = o(t)exp(BiZ, + B.Z,) at the .05 Nominal Level
Model-based Robust
Wald Score Wald Score
True model n = 100 n = 50 n = 100 n = 50 n =100 n =50 = 100 n = 50
1. At) = exp(.2Z, + Zy) .054 .056 .055 .055 .059 075 .056 064
2. At) = exp(.2Z, + Z3) .128 137 .128 139 .061 .069 .054 .057
3. At) = exp(Z3) 122 112 122 114 .049 .058 046 .050
4. At) = exp(.2Z, + Z% + Zy) 126 130 127 132 .058 .068 .057 .057
5. At) =1+ 52, .042 .046 .043 .047 .051 .064 .048 .057
6. At) =1+ 52, + Z% .045 .039 .045 .039 .055 .060 .053 .050
7. At) = log(2 + .5Z,) .045 .045 .047 .050 .057 .066 .053 .064
8. Alt) = log(2 + .52, + Z3) .036 .039 .037 .040 .050 .066 .047 .054
9. logT=-52Z,+ ¢ .078 .066 .078 .068 .075 .077 .069 .067
10. logT = -5Z, - Z + ¢ 184 .185 .185 .188 .052 .069 .048 .063
11. T = exp(—.52Z,) + ¢ .082 .091 .083 .094 .07 .092 .067 .081
12. T = exp(—.5Z, — Z%) + ¢ 101 .106 101 .108 .061 .082 .053 .067

NOTE: 24, Z,, and Z are independent standard normal variables truncated at +5 in rows 1-4 and 9-12. Z; and Z are independent standard normal variables truncated at +1.96 in rows 5-
8. ¢ is a zero-mean normal variable with .5 standard deviation. ¢ is a standard exponential variable. Each entry is based on 1,000 Monte Carlo replications without censoring. Uniform random
numbers are generated through an algorithm provided by Press, Flannery, Teukolsky, and Vetterling (1986, pp. 196-197). Transformation and rejection methods are then applied to create random
variables from other distributions. All calculations are programmed in FORTRAN-77 with double arithmetic precision.

APPENDIX: PROOF OF THEOREM 21

It is simple to show that the assumptions made in Section 2
imply that there exists a neighborhood 4 of * such that, for
eacht<wandr =0,1,2,

SUP/cpo. peall SV(B, 1) — sO(B, D)l — 0

in probability as n — ® and s?(B8, t)/sO(B, t) (r = 1, 2) are

bounded on B X [0, r]. We will use these facts and the assump-

tions repeatedly in the proof without referring to them explicitly.
Notice that

vp =3 [z - [ SLL N o,
where N(t) = KX, <t, 6 = 1} and N (t) 3 Ny). Taylor

expanswn of U(B) around p* results in n'¥(f - p*) =

A-\(f)n-12U(B*), where f is on the line segment between f
and f8*. The consistency of A(f) for A(*) can be easily estab-
lished by the techniques used in the proofs of theorems 3.2 and
4.2 of Andersen and Gill (1982). We will show that n=2U(f*)
can be expressed as a sum of » iid random vectors plus terms
that converge in probability to 0. First, let us rewrite n="2U(8*)
as

poe 2 j " Z(t) dN, (t)

* = SO(B*, ¢t B

_ nuzfo s(o)Eg* t; d{E(t) — F(t)} — 1/2J; E(B)E—/;—*j% dF ()
w |T S(l)(ﬁ*’ t) _ S(l)(ﬁ*, t) . oz

- f {S“”(ﬂ*, 0 s, t)} diF (1) - Fo), (A1)

where F,(t) = N(t)/n and F(t) = E{F,(t)}. Now, n'{F(t) —
F(t)} converges in distribution to a zero-mean Gaussian process.
Therefore, the last term in (A.1) is 0,(1). The third term in (A.1)
can be shown to be

nl/Z fw S(O)(ﬂ*, t)—l
0

sO(B*, 1)

SO(B*, 1) {SOB*, 1) - S‘“’(ﬁ*,t)}]

x dF (t) + o,(1).

x [sm(/;*, f) -

Combining the foregoing expression with the first two terms in
(A.1), we observe that n~"2U($*) is asymptotically equivalent
to n-2 2 w(B*), where

w) = [ {20 - 5& v
YOeBZW) [ ;o SB0) 4o
- [ RO 20 - 55} ko

Notice that w(8*) (i = 1, ..., n) are iid. Thus the asymptotic
normality of n="2U(f*) follows from the multivariate central
limit theorem. The corresponding asymptotic covariance matrix
is B(B*) = E{w\(8*)®}. Therefore, n"*(f — B*) is asymptot-
1cally normal with zero mean and covariance matrix V(8*) =

A (B*)B(f*)A~'(B*). The matrix B(f*) can be estimated by
B(P), where B(B) = n~' 2 W,(B)®. Note that W,(§) is obtained
from w,(B) by replacing s(B, t), s®(B, t), and F() by SOB, 1),
SW(B, t) and F,(f), respectively. The consistency of B(f) for
B(f*) can be established by the properties of the empirical dis-
tribution function and some elementary probability arguments.
It follows that V(B*) can be consistently estimated by V(§),
which completes the proof.

[Received August 1988. Revised March 1989.]
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