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Marginal Regression Models for Multivariate

C. F. SPIEKERMAN and D. Y. LIN

Failure Time Data

In this article we propose a general Cox-type regression model to formulate the marginal distributions of multivariate failure time
data. This model has a nested structure in that it allows different baseline hazard functions among distinct failure types and imposes
a common baseline hazard function on the failure times of the same type. We prove that the maximum “quasi-partial-likelihood”
estimator for the vector of regression parameters under the independence working assumption is consistent and asymptotically
normal with a covariance matrix for which a consistent estimator is provided. Furthermore, we establish the uniform consistency
and joint weak convergence of the Aalen-Breslow type estimators for the cumulative baseline hazard functions, and develop a
resampling technique to approximate the joint distribution of these processes, which enables one to make simultaneous inference
about the survival functions over the time axis and across failure types. Finally, we assess the small-sample properties of the
proposed methods through Monte Carlo simulation, and present an application to a real dental study.
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1. INTRODUCTION

There is much current interest in studying and utilizing
statistical models and methods for handling multivariate
or clustered failure time data. These data are commonly
encountered in scientific investigations because each study
subject may experience multiple events (e.g., recurrences of
a given disease or occurrences of several diseases) or be-
cause the study involves several members from each group
(e.g., twins, classmates, etc.). Lin (1994) provided a de-
tailed description of multivariate failure time data along
with some real biomedical examples. Statistical analysis of
such data needs to account for the intracluster dependence.
To this end, two classes of models—proportional hazards
frailty models and marginal proportional hazards models—
have been proposed. The former approach formulates the
dependence explicitly; the latter does not specify the de-
pendence structure in the model formulation but adjusts for
it in the inference. This article is concerned with the latter
approach.

If each cluster consists of K failure times 77, ..., Tk with
corresponding, possibly time-dependent, covariate vectors
Zy(t),...,Zk(t), then the marginal proportional hazards
model specifies that the marginal hazard functions for 7
(k=1,...,K) are

Ae(t; Zg) = Ag(t)eﬁgzk(t) (1)
or
Me(t Z) = dox(1)e %0, @)

depending on whether the K baseline hazard functions are
identical or different (Lin 1994). In this article we propose
a general model which includes (1) and (2) as special cases.
Specifically, suppose that there are K distinct failure types,
each of which consists of L exchangeable failure times.
Then it is natural to postulate that the marginal hazard

C. F. Spiekerman is Senior Fellow, Department of Dental Public Health
Sciences, D. Y. Lin is Professor, Department of Biostatistics, University
of Washington, Seattle, WA 98195. Please address all correspondence to
the second author. This research was supported by National Institutes of
Health grants AI29168, GM47845, and T32 DE07227. The authors thank
Zhiliang Ying and referees for useful comments.

function for the Ith component of the kth type of failure
is related to the corresponding covariate vector Zy,;(t) by

it Zyy) = Aok (£)€% Zu(®), (3)

where Aox(t) (k= 1,..., K) are unspecified positive func-
tions and B3y is a p x 1 vector of unknown regression param-
eters. Note that Z,(t) and By in (2) as well as Zg;(¢) and
Bg in (3) may be specified in a manner that allows distinct
regression parameter vectors for k=1,... K.

Model (3) resembles the familiar stratified Cox model for
univariate failure time data (Kalbfleisch and Prentice 1980,
p. 33), but here the strata are correlated and there is cluster-
ing of failure times within each stratum. Stratified models
may be used to accommodate nonproportional hazards or
stratified random sampling. Obviously, model (3) reduces
to (1) if K =1 and to (2) if L = 1. The general formulation
given here not only provides additional modelling flexibil-
ity, but also allows one to present theoretical results for
models (1) and (2) in a compact form.

One motivating example for model (3) is the genetic
application such as the schizophrenia study described by
Liang, Self, and Chang (1993) and Lin (1994). In such a
study, the data are collected on the age at onset of a genetic
disease from several relatives of each proband, and it is rea-
sonable to assume that the male relatives share a common
baseline hazard function, which is different from that shared
by the female relatives. A second example arises in den-
tistry. Each person has about 30 teeth. The teeth in different
positions, such as molars versus anteriors, have different
distributions with respect to tooth survival time, whereas
teeth in similar positions, such as contralateral ones, tend
to have similar survival times. In a real dental example given
in Section 3.2, model (3) with K = 6 is shown to be a good
choice.

As in the case of univariate failure time data, the main
statistical issues surrounding models (1)-(3) are the esti-
mation of the regression parameters and the estimation of
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the hazard and survival functions. The estimation of 3,
under models (1) and (2) was studied by Lee, Wei, and
Amato (1992) and Wei, Lin, and Weissfeld (1989), us-
ing what might be termed “quasi-partial likelihood” esti-
mating equations with an independence working assump-
tion. In this article we extend their ideas to model (3).
We develop a large-sample theory for the resulting esti-
mator of By in a more rigorous fashion than was done
by Lee et al. and Wei et al., filling several critical gaps in
the existing proofs. More importantly we establish the uni-
form consistency and joint weak convergence of the Aalen—
Breslow type estimators for the cumulative hazard func-
tions Agx(t) = fg Aok(u)du (k = 1,...,K) under model
(3) and construct confidence bands for these functions and
related quantities. Such results have not been available even
for the special cases of models (1) and (2). Thus the main
methodological contributions of this article are the infer-
ence procedures for the cumulative hazard functions and
survival functions. Figures 1 and 2 illustrate the applications
of these inference procedures to the dental study mentioned
earlier.

The rest of this article is organized as follows. In the next
section we present the main theoretical results. In Section
3 we report some simulation results along with the den-
tal example. In Section 4 we give a few concluding re-
marks. Appendixes A and B contain some technical ma-
terial.
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2. THEORETICAL RESULTS

2.1  Notation and Assumptions

Fori=1,...,n,k=1,...,K,and I = 1,...,L, let Ty,
and Cjy; be the failure and censoring times with respect to
the /th component of the kth failure type in the ith clus-
ter, and let Z;x; = (Z1iki, -, Zpart)T be the corresponding
(possibly time-varying) covariate vector. The marginal dis-
tribution of T3y, is related to Z;j; through model (3). Define
T, = {’-rikl;k = 1,...,K,l = 1,...,L}, with Cl and Zi
defined similarly. Suppose that (T;,C;,Z;) (i = 1,...,n)
are iid and that T; is independent of C; conditional on Z,.
Write Xx = T A Cing and Ay = T < C’z‘kl), where
aAb = min(a,b) and 1(-) is the indicator function. Assume
that K and L are fixed constants. The clusters are allowed
to have different sizes, which is achieved by setting Cjy, to
0 whenever T;;; is missing. We assume that the number of
nonmissing observations per failure type tends to co as the
number of clusters goes to oc. Let

Yi(t) = (X > t), Nia(t) = A1 (X < t),
and
84
Migi(t) = Ny (t) — / Yike(0) Aok (1)e Zext (W) goy - (4)
0
One may modify Y (-) to allow left truncation and other

general at-risk processes. Note that A (t) is a mar-
tingale with respect to the marginal filtration F; ;5 =
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Figure 1. Baseline Survival Function Estimates for the Six Types of Teeth.

, Upper molars; - - -, lower molars; -- -, upper premolars; ———,

lower premolars; ——, upper anteriors; — - — -, lower anteriors. The baseline corresponds to a 45-year-old smoker with satisfactory oral hygiene.
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Figure 2. Estimation of the Survival Function of the Upper-Molar Teeth for a 45-Year-Old Smoker With Satisfactory Oral Hygiene. The point
estimate is shown by the middle bold solid curve, the robust 95% confidence band by the outside solid curves, the naive 95% confidence band by
the dotted curves, and the robust pointwise 95% confidence limits by the dashed curves.

o {Niki(s), Yir(8), Zii(s): 0 < s < t}; however, due
to the intraclass dependence, My (¢t} (i = 1,...,nik =
1....,K;l=1,...,L) are not martingales with respect to
Fr =V, vE  VE | F ik, the joint filtration generated by
all of the failure, censoring, and covariate histories up to
time £.

It is convenient to introduce the following notation: for

k=1,...|K,

S(T ﬁ t 7IZZYH IL)EB Z,kl(t)z ( ) v
i=1 (=1
si”(8.1) = £{87(8.1)},
st(8. 1) s (8.1)
E (ﬁvt):—k*—* (ﬁ,t):L—,
* sV S0(8,1)
S<2)(
ViB1) = < E(8.4)%2
k )
and
_ Sl(cZ)( ®2
Vk(:Bt) 8(0) ek(ﬂSt)
k

where a®? = 1, a®! = a, and a®? = aa? and & denotes

expectation. We denote the summation over a subscript by
replacing that subscript with “.””.

The following set of conditions are assumed throughout
the article. For some constant 7 > 0:

a. Pr{Y,(t) =1, forall ¢t € [0,7]} > 0 for all ¢, k and [.
b. [ Z;ie(0)] + [ 1dZjim(u)] < Bz as. for all j,i,k,1,
and some constant Bz < oc.

c. A = S, [T vi(Bo.u)sy)

tive definite.

(Bo, u) Aok (u) du is posi-

Conditions a and b, together with the iid assumption, entail
the following:

d. jo Aok (u) du < oc for each k.
e. There exists a neighborhood B of 3, such that for

r=012andk=1,... K,

sup  [|ISV(8,8) — s (8, 1)1 e B0,

te(0,7],8€8

where ||al|g = (aTa)!/2 for a column vector a.

f. s,(c”(ﬁ,t) (k =1....,K;r = 0,1,2) are continuous
functions of 3 € B uniformly in ¢ € [0,7] and are
bounded on B x [O,T],sfco)(ﬁ,t) k=1....K) are
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bounded away from 0 on B x [0, 7], and

si(8,1) = ;ﬁsﬁ”(ﬁ,w
and

(8.6 = 555 5 (8.1)
fork=1,....,K,8€B,and t € [0,7].

2.2 Construction of

k=1,...,K

Under the independence working assumption, the “quasi-

partial likelihood” for 3y is
eﬁ Zigi (Xikt) }AZM
S(O (B, Xikt) 7

n K L {

i=1k=11=1
which is the partial likelihood function for a stratified Cox
model with K independent strata and nL independent ob-

servations in each stratum (Andersen, Borgan, Gill, and
Keiding 1993, p. 482). The logarithm of £(8) is

18) = ﬁj}:z/ 167 Zura (1

i=1 k=1 I=1

Estimators for B, and Agl")

~ log{nS" (8, u)}]

X AN (u).

The first and minus second derivatives of [(3) are

K L T
D) DY AED

1 k=11=1

~ Ei (8, u)} dNig(u)

n
1=

and

n

(8) =

K L ..
ZZ/O V(B u) dNigi(u).

=1 k=11=1

It is easy to see that Z(3) is positive semi-definite. Let 3
be the root of U(3), which is unique if Z(/3) is nonsingu-
lar. The corresponding Aalen—Breslow type estimators for
Ao(t) (k=1,...,K) are

Aok (t:B) = /Ot

It follows from (4) that

U(Bo) iZZ/ {Zii(u

i=1 k=1 I=1

dN.j.. (1)
nSY(B,u)

— E(Bo, u)} dMig (u),

)
and, given Y.(¢t) > 0,

b dMy. (u)

—_— 6)
o nS” (8o, u) (

Aok (t; Bo) — Aox(t) =

As mentioned in Section 2.1, My (t) (1 = 1,...,nk =
1,...,K;l =1,...,L) are not martingales with respect to
the joint filtration F;; therefore, the familiar martingale con-
vergence theorems cannot be directly applied to (5) or (6).
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Thus we use other tools, including those from the theory of
empirical processes, to study the asymptotic properties of
the proposed estimators.

2.3 Asymptotic Properties of 3 and U(3,)

In this section we state and prove the main theorems for 3
and U(By). Because these results are natural extensions of
those of Wei et al. (1989) and Lee et al. (1992), we keep our
discussion fairly brief. It should be noted that more rigorous
and complete proofs are provided here than in those papers.
In fact, one of the main motivations behind this work was
to fill some important gaps in the existing proofs. To avoid
unnecessary technical distractions, we relegate to Appendix
A several lemmas, which are useful in this section as well
as in Sections 2.5 and 2.6 and Appendix B. The following
lemma is proven in Appendix B.

Lemma 1. The estimator 8 converges in probability
to ,80.
Theorem 1. The random vector n~/2U(3,) converges

weakly to a p-variate normal vector with mean 0 and co-
variance matrix B = £(w§?), where wiy = [ {Ziw(u) —
€L (ﬂo, LL)} dﬂfikl (’U.)

Proof. By Lemma A.1,

nfq/2j/T{E%(ﬂb,u)——ek(ﬂo,u)}dﬂfk(u)lgo, 0
0

which implies that

n

K L .
,30)—222/0 {Ziri(u

i=1 k=1 =1

) = ex(Bo, u)}

x dMgi(u) + 0y (n'/?). (8)

Because (8) is essentially a sum of n iid random vectors
with zero mean and finite variance, the desired asymp-
totic normality follows from the multivariate central limit
theorem.

Remark 1. In the case of L > 2, (7) is not a trivial
result. Lee et al. (1992) also used this result to study the
asymptotic properties of U(3;) under model (1) (i.e., K = 1
and L > 2), but did not provide a justification for it. The
proof of Lemma A.1 given in Appendix A fills this crit-
ical gap.

Corollary 1. The random vector n'/2(3 — B,) con-
verges weakly to a p-variate normal vector with mean 0
and covariance matrix & = A"!BA ™.

Proof. By the Taylor series expansion,

87)/n}"'n

where (3* is on the line segment between 3 and B3o. The
desired convergence then follows from Theorem 1 provided

n'2(B - Bo) = {Z(B 2U(8y),  (9)
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that

n1Z(8*) 5 AL (10)

The proof of (10) is deferred until the next section.

2.4 Asymptotic Properties of Ay (;8) (k=1, ..., K)

In this and the following sections, we study the esti-
mation of the cumulative baseline hazard functions Agx(-)
(k = 1,...,K) and related quantities, which is the main
methodological contribution of our work. The proofs of
the theorems are quite technical and tedious and thus are
relegated to Appendix B. In the sequel, we use the norm
1f ()l = supsefo,-) |f(t)] for a function f: [0,7] = R. We
first give a theorem that we use to establish the uniform
consistency of Ag(;8) (k = ,K) as well as other
results.

Theorem 2. Let f,(-) (n = 1,2,...) be a sequence of
possibly random, left-continuous functions with right-side
limits such that [J |dfu(u)| = Op(n'/?) and ||f.(t)]] =
O,(1). Also, suppose that 3* converges in probability to
BO. Thenfork=1,..., K,

t t
/fn(U)df\o;c(u;B*)—/ Falw)Aor(uw) dul| 20. (11)
0 0
Furthermore, if || f,(¢) — f(¢)|| =7 0, then
t R t
/fn(u>dA0k(U;,B*>“/ FalwAor(w) dul| B0. (12)
0 0

Theorem 2, together with Lemma 1, implies (10) as well
as the following result.

Corollary 2. For each k = 1,... K, the estimator
Aok(t; B) converges in probablhty to AOk(t) uniformly in
tel0,7].

We now study the weak convergence of Agx(:;8) (k =
1,....K). Let W(t) = n'?[{An(t;8) — Aa:i(t)}, ...,
{Aok (t;8) — Aok ()}]T. Also, let W(t) = {Wi(t),...,
Wi (t)}T be a zero-mean Gaussian random field, the co-
variance function between W;(s) and Wi (t) (1 < j,k <
K:0 < s,t < 71) being &g(s, t) = E{V1;(s)¥1x(t)}, where
fori=1,...,nand k=1,... K,

Vi(t) = /Ot

and hy(t) = - [5ex(Bo,u)rok(u)du. In addition, let
D0, 7]% be a space consisting of functions f: [0,7] —

R¥ such that f(t) = {fi(t),..., fx(t)}T, where for each

E=1,....K, fk [ r} - R 1S nght—contmuous with left-

side limits. Make D[O 7]% a metric space by equipping it

with the metric pg(f, g) where px (f,g) = max{||fx(t) —
H|l: 1 <k < K} for f,g € D[0,7]¥

d M. ()

+h()TA  wy
sgco) (605 U)

Theorem 3. The random field W (t) converges weakly
to W(t) in D[0, 7}¥

Journat of the American Statistical Association, September 1998

2.5 Variance and Covariance Estimation

It is natural to estimate A and B by A(3) = Z(8)/n
and B(ﬂ =n"! Zz IW?Q, where Wi = fO {szl( ) -
Ek(ﬁ, )}dﬂ[zkl( ) and Afzkl(t) = :\Irzkl fO ikl u)
BT Zin(w) df\ok(u;ﬁ). The consistency of A(ﬁ) follows
from (10) and Lemma 1, whereas that of B(3) follows from
Lemma A.2. Thus we have the following result.

The covariance matrix estimator A (3)~!
converges in probability to €2.

Corollary 3.
B(B)A(B)™!

Remark 2. AThe consistency of the covariance matrix
estimators of 3 proposed by Lee et al. (1992) and Wei et
al. (1989) for models (1) and (2) has not been established
before, but now follows immediately from Corollary 3.

Similarly, we estimate the limiting covariance function
Er(s,t)(1 < 7,k < Kis,t € [0,7]) by its empirical
counterpart £ (s,t) = n~t "7 U, ()W (¢), where for

i=1,....nand k =1,..., K,
- t dJ\jfi Au - <A -
bl = [ S 8 0TAG)
0 Sk (ﬂ7u)
and Hy(3,1) = — [} Ex(B, u) dAox(u; 3). The following re-

sult follows from Lemma A.2, Corollary 3, and the proof
of Theorem 3.

Corollary 4. ~Forany 1 <, k < K, the covariance func-
tion estimator &;x(s,t) converges in probability to &;x(s,t)
uniformly in s, ¢ € [0, 7].

2.6 Simultaneous Inference on Au(-) (k=1, ..., K)

Theorem 3 and Corollary 4 enable one to make infer-
ence about the Agx(-) at fixed time points. To draw more
general simultaneous inference, such as constructing confi-
dence bands for Agx(-) or testing the equality of Ag;(-) and
Aok (+) (4 # k) over the entire time span of interest, we need
to evaluate the probability distribution of W(-). This cannot
be done analytically even if K = 1, due to the complicated
nature of the covariance function. We instead develop a re-
sampling method to approximate the distribution of W(-).

Define W(t) = {Wy(t),..., Wk (t)}T, where Wy(t) =
n 23 a6 (k=1,...,K) and (Gy,...,G,) are
independent standard normal variables that are indepen-
dent of the data {lel(f) Yii(t), Zigi (t);t € [0 T}} (i =1,

nyk =1,...,K;{ =1,...,L). The following theorem
states that W and W have the same limiting distribution.
It is proved in Appendix B.

Theorem 4. Conditional on the data {N;x(t), Yik(t),
Zlkl()tE[OT]}(l—l Lmk=1,... K;l=1,. L),
the random field W converges weakly to W in DJ0, T}
probability.

Remark 3. Theorem 4 involves the concept of con-
ditional weak convergence in probability (van der Vaart
and Wellner 1996, sec. 2.9), and says that, for any con-
tinuous bounded function f: D[0,7]¥ — R, the condi-
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tional expectation £{f(W)|X’} converges in probability to

E{f(W)}, where X denotes the o field generated by the
data {lel(t) ,kl(t),Zikl(t);t € [O,T]} (i=1,...,nm;k =
JKl=1,...,L).

Theorem 4 provides the theoretical basis for our resam-
pling method. To approximate the distribution of W (), we
obtain a large number of realizations from W(-) by re-
peatedly generating normal random samples (Gy,...,Gp)
while ﬁXll’lg the data {J ikl (8), Y (), Ziga (8)5 8 € [0 T]}
(t=1,...,nk =1,. ,.-., L) at their observed
values.

" This resampling scheme shares the spirit of that used by

Lin et al. (1994) for constructing the confidence bands with
univariate failure time data. Due to the intracluster depen-
dence of multivariate failure times, however, the approxi-
mation developed here differs substantially from that of Lin
et al. (1994), and the proofs given in Appendix B are more
difficult. In fact, Lin et al. did not rigorously justify their
resampling scheme. For the special case of K = L = 1,
the W(-) process considered here reduces to that of Lin et
al., and our W(-) is asymptotically equivalent to, though
still numerically different from, Lin et al.’s approximating
process.

To construct confidence bands for Agg(-), it is use-
ful to consider the transformed process Wi(t) =
n'2q(t)[¢{ Aok (t; B)} — ¢{Aok(t)}], where ¢ is a known
function with nonzero continuous derivative ¢’ on
[Aok(t1), Aok (t2)] (0 < t; < ta < 7), and the weight func-
tion ¢(-) converges in probability to a nonnegative function
uniformly on [t1, to]. By the functional § method (Andersen
et al. 1993, sec. IL8), Wy (t) = q(t)¢'{Aok(t; B)}Wi(t) +
op(1), whose distribution can be approximated by that of
Wi(t) = q(t)d'{Aok(t; B)}Wi(t). Let ¢, be the bound-
ary value satisfying Pr{sup,cj;, ¢, W) > ca} = a, the
probability being estimated through simulation. Then an ap-
proximate (1 — «)100% confidence band for ¢{Aox ()} on
[t1,t2] is d{Agk(t; B)} T n1/%cq/q(t). The choices of the
transformation ¢ and weight function ¢ were discussed by
Lin et al., and the same principles apply here.

A subtle correction is recommended in evaluating the dis-
tribution of the supremum of the [W}(-)| process. If ¢(-) is a
step function that changes values only at observation times,
then one can write sup, |W} (¢)] as

II}%XGWZ(XWN V nt2q(Xi—) [ o{ Aok (Xizi—: B)}

— ¢{A0k(Xiﬂ§ B + a(Xij—)WE (Xiji) [a( Xijn))),

where a vV b = max({a,b). Thus we estimate c, to be the
(1 — @)100th percentile of 1,000 simulated realizations of
Xijl"?:é)}

H}%X(I‘W(Xij'zﬂ V' 2q(Xi5-) [{ Aok (

— o{ Aok (Xiji; B) 1] + a(Xiji—) Wi (Xiz)/a(Xij0)))-

Our experience indicates that this approach results in better
small-sample performance than the more obvious choice of
max;; {|Wy (Xi)| V [Wr(Xi;—)|}, although the two ap-
proaches are asymptotically equivalent.
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3. NUMERICAL RESULTS

3.1  Simulation Studies

Extensive simulation studies were conducted to assess the
finite-sample behavior of the inference procedures proposed
in Section 2. The results of our studies on the estimation of
Bo under model (3) are similar to those of Lin (1994) for the
special cases of models (1) and (2). They showed that the
asymptotic approximations are adequate for practical use
and that ignoring the intracluster dependence could yield
misleading variance—covariance estimators. The details are
omitted here but have been provided by Spiekerman (1995).

To evaluate the performance of the proposed confidence
bands, we generated multivariate failure times from model
(1) under two families of multivariate distributions: the
Clayton (1978) family with joint survival function

PI‘(T1 >ty,..., Ty > tL1ZL... ZL)

[Z exp{—(

and the Hougaard (1986) family with joint survival function

Pr(Ty > t,..., L Z1)

L 'Y
_ {Z (tleﬁozz)l/ﬁ’} } .
=1

We set 6 to 1.0,1.67, and 3.0, corresponding to Kendall’s 7
of 0 (independence), .25, and .5under Z, =0 (! =1,...,L),
and set v to .7,.5, and .4, corresponding to Kendall’s 7 of
.3,.5, and .6 under Z1=0(=1,...,L). A single dichoto-
mous covariate was included in the model and (3, was set
to log 2. The covariate values were generated by two de-
signs. Design 1 represents a matched study in which half
the members of each cluster have Z = 0 and half have
Z = 1. Under design 2, Z represents a cluster-level covari-
ate whose values are the same for all members of the same
cluster, and we set Pr(Z = 0) = Pr(Z = 1) = 1/2 for each
cluster. The failure times within each cluster were poten-
tially censored by a common uniform|0, ¢] random variable
independent of the failure times. The censoring parameter
¢ was chosen to achieve 25%, 50%, or 75% censorship.

We studied primarily the Hall-Wellner type band based
on the log transformation of the cumulative hazard func-
tion. Specifically, we chose ¢(-) = log(-) and ¢(t) =
Ao(t; [3')/{1 +£11(t, t)}. The resulting 95% confidence band
for the baseline survival function Sy (t) = Pr(T > ¢t|Z = 0)
takes the form So(¢)e®{En™"*cos/a®)}  where S5(t) =
exp{—Aq(t; B)}. To reduce tail instabilities, we set t; = 0
and t, = .9¢ and restricted each band to be between the
first and last uncensored failure times. For comparison, we
also evaluated the corresponding Hall-Wellner type band of
Lin et al. (1994, eq. 2.4). We refer to the latter as the naive
confidence band, because no adjustment is made to account
for the intracluster dependence.

Tables 1 and 2 display the empirical performance of the
95% confidence bands for the true baseline survival func-
tion under Clayton’s and Hougaard’s families of distribu-
tions. Each entry was based on 1,000 simulated datasets.

1/(1-6)
Uozltl} L+1

T > tL!Z1,...

= exp
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Table 1. Empirical Coverage Percentages of the 95% Confidence Bands for the Survival Function Under the Clayton Family of Distributions

Design 1 Design 2
L=2 L=+ L=2 L=4

4 n Censoring % Robust Naive Robust Naive Robust Naive Robust Naive
1.00 50 25 93.9 95.6 93.5 95.3 93.4 96.5 93.5 97.1
50 95.9 97.3 95.7 97.4 94.2 96.3 92.5 96.4

75 95.4 96.1 95.3 96.8 94.8 96.5 95.8 97.6

100 25 95.1 95.8 94.3 95.1 92.8 94.0 92.9 94.7

50 95.7 96.5 96.1 96.7 95.6 97.2 94.9 96.1

75 96.4 96.8 95.8 96.5 95.8 96.7 95.7 96.6

200 25 95.4 95.3 95.3 96.0 954 95.6 94.4 94.6

50 95.9 96.0 95.6 95.9 94.8 95.4 94.8 94.8

75 95.7 95.7 94.3 94.7 95.4 96.2 95.5 96.2

1.67 50 25 94.6 96.6 93.0 92.8 94.3 94.0 92.9 87.1
50 94.9 95.7 94.8 94.6 93.9 94.7 92.7 89.5

75 96.4 97.0 94.6 94.4 95.4 96.2 94.1 92.5

100 25 95.4 96.3 93.0 90.6 94.1 91.7 94.1 83.5

50 96.2 96.4 95.9 94.9 95.2 94.1 94.5 88.5

75 95.5 96.6 95.5 95.0 95.2 94.6 94.7 91.5

200 25 94.3 94.3 945 89.2 94.1 91.5 94.0 83.1

50 95.9 95.9 95.0 91.8 95.7 93.5 95.1 87.9

75 96.3 96.6 94.4 92.7 94.9 94.2 93.3 89.4

3.00 50 25 94.6 95.9 91.8 89.2 94.5 90.2 89.4 75.6
50 94.0 96.1 95.4 93.3 93.5 93.5 92.7 83.8

75 96.1 96.6 95.7 92.8 94.7 94.1 93.7 88.2

100 25 94.0 94.2 93.3 86.2 93.8 86.3 95.0 725

50 95.4 95.7 95.9 91.9 95.2 915 95.5 81.2

75 96.0 96.2 95.5 92.4 95.0 93.3 94.9 87.5

200 25 94.6 94.1 94.7 86.0 94.2 85.1 94.8 71.2

50 96.3 96.6 95.2 91.0 94.7 90.3 95.4 79.7

75 96.0 96.4 95.1 91.9 96.2 93.5 95.9 86.5

For each dataset, 1,000 simulations were used to estimate
the boundary values. The “continuity correction” described
at the end of Section 2.6 was used for both the robust and
naive bands. The proposed (robust) confidence bands main-
tain coverage probabilities near the nominal level in vir-
tually all cases. The naive bands perform well under in-
dependence, but in general do not have proper coverage
probabilities when the failure times are correlated. The un-

dercoverage of the naive bands is the most severe under
design 2 with L = 4.

3.2 A Real Example

We now apply the proposed methods to a dental study
conducted by Dr. Michael K. McGuire of the University
of Texas to assess the role of commonly measured clinical

Table 2. Empirical Coverage Percentages of the 95% Confidence Bands for the Survival Function Under the Hougaard Family of Distributions

Design 1 Design 2
L=2 L=4 L=2 L=4

¥ n Censoring % Robust Naive Robust Naive Robust Naive Robust Naive
7 50 25 93.7 95.2 93.7 87.7 94.4 93.0 92.7 86.5
50 94.4 95.8 95.8 92.3 94.4 94.2 95.0 88.6

75 95.5 96.8 95.1 90.8 95.7 93.8 93.3 87.0

100 25 93.2 94.2 94.3 81.5 94.7 91.2 92.7 84.4

50 94.0 94.9 94.1 85.0 95.5 92.7 94.7 86.2

75 94.9 96.5 94.0 87.5 95.7 92.7 94.1 85.3

5 50 25 94.4 96.0 921 90.2 93.2 90.6 92.2 78.5
50 94.0 95.9 93.9 93.0 94.9 91.5 94.5 81.6

75 95.5 95.7 95.3 93.4 95.6 92,5 93.7 81.8

100 25 93.0 93.6 94.6 89.2 94.3 89.1 95.0 779

50 95.3 96.0 95.7 92.3 95.0 91.1 94.3 78.4

75 95.1 96.2 95.1 92.3 96.0 91.3 94.1 80.6

4 50 25 93.0 94.8 91.5 89.7 94.1 89.8 93.7 79.1
50 94.9 96.2 95.4 93.8 94.3 90.9 96.1 81.9

75 96.4 97.1 95.5 93.4 94.4 91.4 95.1 82.6

100 25 93.3 93.2 94.2 88.2 94.5 87.3 94.5 76.1

50 94.8 95.6 95.8 925 94.9 88.9 95.3 78.8

75 96.0 96.5 95.8 92.1 94.7 90.3 95.5 80.2
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parameters in predicting tooth survival (McGuire and Nunn
1996). The database consists of 100 consecutive patients
from Dr. McGuire’s appointment book who had at least 5
years of maintenance care. All of these patients had been
initially diagnosed with moderate to severe chronic adult
periodontitis.

For this illustration, we confine our attention to the ef-
fects of behavioral factors, such as cigarette smoking and
oral hygiene, on tooth survival. For each tooth, the failure
time is defined as the time to tooth loss measured from the
initiation of active periodontal therapy under Dr. McGuire.
The failure times for the teeth of the same patient are an-
ticipated to be strongly correlated.

As is commonly done in the analysis of dental data, third
molars (i.e., wisdom teeth) are excluded from our analysis.
One patient had all 20 surviving teeth extracted at a sin-
gle visit. We exclude this individual from our analysis be-
cause of the extreme leverage on the regression parameter
estimates. The remaining data contain follow-up on 2,413
teeth, with failures observed on 93 teeth. The follow-up
time ranged from .33 to 15.17 years.

After the exclusion of wisdom teeth, each patient has 28
possible teeth. The 28 tooth positions fall into six groups or
types: upper and lower molars, upper and lower premolars,
and upper and lower anteriors (Harty and Ogston 1992). The
survival distributions are expected to differ appreciably be-
tween these groups but to be the same or similar within the
same group (Hujoel et al. 1998). Thus we consider model
(3) with six separate baseline hazard functions for the six
types of teeth. We include three covariates in the model:
smoking, coded as 0 if the patient was a smoker and 1 oth-
erwise; hygiene, coded as 1 if the patient exhibited poor
oral hygiene and 0 otherwise; and log(age), centered at the
sample mean, log 45, to make the baseline survival func-
tions more meaningful. Due to the small numbers of ob-
served failures, especially in the anterior teeth, we impose
a common regression parameter vector for the six types of
teeth.

The regression results are summarized in Table 3. The
relative risk of tooth loss for cigarette smoking is 2.45,
with a robust 95% confidence interval of (1.21, 4.95). Due
to the strong dependence among failure times of the same
patient, the robust standard error estimates for the three re-
gression parameter estimates are substantially higher than
their naive counterparts. In fact, the effects of oral hygiene
and age are significant at the 5% level according to the
naive Wald tests, but not according to robust tests. Inci-
dentally, none of the second-order terms was found to be
significant. Furthermore, the p values for testing the sig-
nificance of dummy time-dependent covariates of the form

Table 3. Estimates of the Regression Parameters for the Dental Study

Robust Naive
Covariate Estimate SE P value SE P value
Smoking —.898 .359 012 214 <.001
Hygiene 699 531 .188 274 011
Log(age/45) 1.205 681 077 499 .016

NOTE: “Estimate” denotes the point estimate of the regression parameter and “SE” denotes
the estimated standard error. The “P value” is two-sided.
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Z xlogt are .93, .71, and .55 with respect to smoking, hy-
giene, and log(age), providing no evidence against the pro-
portional hazards assumption.

The six baseline survival function estimates are exhibited
in Figure 1. The codings of the covariates imply that the
baseline pertains to a subject who is a 45-year-old smoker
with satisfactory oral hygiene. There appear to be consid-
erable differences between the tooth groups. Furthermore,
these differences do not satisfy proportional hazards, as is
evident from the figure and confirmed by numerical tests;
the p value for testing the significance of Z = logt is .039
with respect to the indicator covariate of upper molar ver-
sus lower anterior. Thus it would be inappropriate to use
model (1) with indicator covariates to represent the differ-
ences between the tooth groups.

Figure 2 displays the point estimate along with the 95%
pointwise confidence limits and simultaneous confidence
bands for the baseline survival function of the upper molars.
It is not surprising that the robust pointwise confidence lim-
its are much narrower than the robust confidence band. The
naive confidence band lies within the robust band, and even
within the robust pointwise confidence limits after year 9.
The naive pointwise confidence limits, which are not shown
in the figure to avoid overcrowding, are much narrower than
their robust counterparts. This figure demonstrates the im-
portance of adjusting for intraclass dependence as well as
multiple comparisons.

Instead of model (3) with K = 6, one could use model (2)
with 28 different baseline hazard functions, but this would
result in less parsimonious summarization of the data and
also incur loss of statistical efficiency. The small numbers
of observed failures, especially for the individual tooth po-
sitions in the upper and lower anteriors, further favor using
model (3) over (2).

4. DISCUSSION

The marginal modelling methodology as described by
Lee et al. (1992) and Wei et al. (1989) has been imple-
mented in the recent releases of SAS, S-PLUS, STATA and
other statistical software packages, which is likely to in-
crease its popularity. This article complements the work of
Lee et al. and Wei et al. in several key aspects. First, it of-
fers additional modeling capabilities by allowing separate
baseline hazard functions among different strata and impos-
ing the same baseline hazard function within each stratum.
Second, it provides a rigorous asymptotic theory for the
estimation of the regression parameters, filling several im-
portant gaps in the existing proofs for the special cases of
models (1) and (2). Third, it establishes the asymptotic prop-
erties of the Aalen—-Breslow type estimators for the cumula-
tive baseline hazard functions and develops the correspond-
ing inference procedures. We hope that these new results
will facilitate further research and applications of statistical
models and methods for analyzing multivariate failure time
data.

In Section 2 we focused on the estimation of the base-
line survival function. Often, one is interested in estimating
the survival function associated with a given set of covari-
ate values, say zp. This is particularly useful in predicting
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the survival experience for future patients. Note that the
survival function associated with z, is equal to the base-
line survival function if the covariates are centered at zg.
Thus it does not lose any generality by concentrating on the
estimation of the baseline survival function, though simple
modifications can be explicitly made to the formulas in Sec-
tion 2 to estimate covariate-specific survival functions.

The resampling method developed in Section 2.6 may
also be used to compare Ag;(t) and Agg(t) (j # k) or
the corresponding survival functions over the time interval
[t1,£2] (0 < t; < t2 < 7). Specifically, one can construct
confidence bands for the difference ¢{Ao;(-)} — ¢{Aok()}
by considering the process Wy (-) — Wi (), whose distri-
bution can again be approximated by simulation. As a
by-product, one can generate Kolmogorov—Smirnov type
statistics to test the equality of Ag;(-) and Agx(-). These
tests are consistent against the general alternative Ag;(t) #
Aok (t) for any t € [tq,t2].

The desired asymptotic results were derived under a
reasonable set of conditions. These results also hold
under other sets of conditions. In particular, one may
relax the iid assumption on the (7;,C;,Z;)’s merely
by assuming independence of the (T}, C;,Z;)’s. Without
the iid assumption, however, additional regularity condi-
tions and more complicated notation would be required.

Specifically, we would need to redefine sﬁf) B,t) =
limp oo n ™ Y0 EzL:1 E{Yim(t)eP ZrOZ ()8} (k =
..., K;r=0,1,2),B = limy,eon~ ' o0, E(W®?), and
E(t, s) = limp oo™ 320, E{Wy5(s) T (t)} (1 < jik <
K;s,t € ]0,7]), and assume that these limits exist.

Cai and Prentice (1995) explored alternative methods for
estimating 3y under model (2), and Liang et al. (1993) did so
for model (1). The latter authors also suggested an estimator
for Ag, but did not investigate its properties. In the one-
sample case with dependent failure time observations, Ying
and Wei (1994) showed that the Kaplan-Meier estimator
remains consistent and asymptotically normal.

In some applications, it is of scientific interest to assess
the strength of dependency among related failure times with
adjustment for the effects of covariates. One promising ap-
proach, as alluded by Bandeen-Roche and Liang (1996), is
to characterize the dependency with the association param-
eter 6 of the Clayton (1978) model while formulating the
marginal distributions with model (1), (2), or (3). The esti-
mation theory for By and Agx (k = 1,..., K) developed in
this article will be useful in studying inference procedures
for 6 under this formulation.

APPENDIX A: SOME USEFUL LEMMAS

Lemma Al. If fn (n = 1,2,...) is a sequence of random
functions on [0, 7] that satisfies

/wmw@m
and

If2 I = 0p(1), (A.D)

then for k = 1,...,K and L = 1,...,L,||[n""2 [7 fu(u) dM iy
(w)|| -7 0.
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Proof Fix k and [, and let ¢ > 0 and § > 0. Be-
cause n”Y2M y(t) is a martingale with respect to the filtration
Vi< Ft,iki, standard martingale arguments yield

1M ki (t)]f = Op(n'?). (A2)
It then follows from integration by parts that
t
n_l/2/ Frlw) dM gy (u)
0
t
< n—1/2/ Moy () dfn(W)|| + 0p(1). (A3)
0

By (A.1) and (A.2), there exists a constant, say 7, such that
limsup Pr {/ |dfn(u)] V |0~ Y2 Mg (8)]| > n} <4 (A4
n 0

The fact that n /%M1, (t) is a martingale with respect to the
marginal filtration implies that there exists a finite set of points
0=to <--+ <tm =7 such that

nmsuppr{un-l/%w.kl(t) — Ma (1) > %} <5, (A5)

where M, (t) =n~"2 3" My(t;-1)1(t;-1 < t < t;) (Pollard

i=

1984, p. 180). The first term on the right side of (A.3) is

/ {n_lszMu)_Mn(u)}dfn(u)+/ M (u) dfn (u)
0 o}

QWWMM—MWMI%M
0

+ 2m|[n Mo ()l £ ()]
By (A.1),

(A.6)

limsup Pr{ I fa ()] > 4;77} =0 (A7)

Thus, by (A4), (A.5), (A.7), and the fact that § is arbitrary, the
right side of (A.6) converges in probability to 0. This completes
the proof.

Lemma A.2.  Let f, and f be as described in Theorem 2. Then
forl1<jk<Kand1<Im<L,

11%12 {/ fn(u)d]CIikl(u)/ o (0) ANy (0)
i=1 0 o

where || f(s, £)ll2 = supo<, <, 1£ (s, )]

- / F(u) dM (w) / | f(u)dM”m(v)} 20, (A8)
0 0

2

Proof. Fix k, 3,1, and m. Then

Tty / Fa(w) dMip(u)

X {/ fn(v)dz’ﬁfijm(v)—/ f(v)dM”'m(v)}

2
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WY [ (o) -
i=1 0

f(v)}dNojm (v)

+

/ T(0,8 B) fu () dhos (v: )

_/3 J(v,t; Bo) f(v)Aoj (v) dv (A.9)

2

where Jix(t) [) fn(w) dMixa(u) and J(v,6;8) = n7!

> Jikl(t)Yijm(v)eﬂTZiJm(”). By conditions b, e, and f,

max ikt (8)]] = Op(1). (A.10)
Thus, by the consistency of 3 and condition b, ||j(s,t;B) -
J(s,t;80)l2 = op(1). A minor extension of Theorem 2 can
then be used to show that the second term on the right side
of (A.9) converges to 0. The condition |[f.(t) — f(t)| %
0, together with (A.10), implies that the first term on the

right side of (A.9) is also asymptotically negligible.
Thus (A9 5 0. Likewise, [n™'3 7 1fo v) dMijm (V)
{ f Fn () dMigy (u fo (u) dMiri(w)}|2 = 0p(1). Hence (A.8)
holds.

Lemma A3. Let Xi,...,X. be a sequence of real-
valued random variables, let Yi,..., Y, be a sequence
of random p vectors, and let h,: RPf! > R be a
sequence of random functions such that {X;, Y An(X
Y} (¢ = 1,...,n) are measurable with respect to the

increasing o field X,. Also assume that H, = {n7!
S ha(Xi, Yi)2}? = 0,(1). Let Gi,...,Gn be independent
standard normal random variables that are 1ndependent of Xs.
Then

(A.11)

n71/2 Zhn(Xi,Yi)l(Xi < t)G, = Op(l).

1=1

If H, = O,(1), then so is (A.11).

Proof. Let X} <
and let Y[i] =Y
of X, we have

|

k
< —1/2 W (X, Y
< Pr{lrgl]?%(n n Zh (X1, Y)G

< éllj'r{n_l/2 >s},

where the last inequality follows from the reflection prin-
ciple (Shiryayev 1984, lem. 1, p. 372) after conditioning
on X,. A simple characteristic function argument can then
be used to show that n='/25"" . (X, Yu)G: & 0 if
H, % 0. For the case with H, = 0O,(1), note that
Pr{n‘1/2|zz (X, Ya))Gil > n°} = E{Pr(Ha|G:1| >
?1X)}y £ Pr(H. > n) + Pr(|Gi] > n), which can be
made arbitrarily small for large 7.

- < X|n) be the order statistics of the X,
5 if X5 = X;. Because the G, are independent

_1/2Zh (X, Y)1(X, <Gy

n

Zhn(x[i]yY[i])Gi

1=1
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APPENDIX B: PROOFS OF LEMMA 1 AND
THEOREMS 2, 3, AND 4

Proof of Lemma 1
Note that n*{I(3) — 1(Bo)} equals

K
> {(ﬁ—ﬂofsﬁjkﬁw
k=1 YO

_ S)(cO)('B’u)} ) u] ”
lo {S]E:O)()GO»U) Sk (,30, ) )\Ok(u’)d

n

K L pr
n! Z Z/ [(ﬁ—ﬁo)TZ:kt(u)
0

i=1 k=1 I=1
— log {——~S'(°O)(6’ “) H dMi (w)
St (Bo. u) T

By the weak law of large numbers and Lemma A.1, the second
term in the display converges to 0 in probability. In view of con-
ditions e and f, the first term converges in probability to

K r
T_(1) (O)(B U) 0)
D[ BB (Bosw) —log ) i 157 (Bo,w)
= Jo (Bo,u)
k=1 Sk
X )x()k(u) du.
It then follovys from the proof of lemma 3.1 of Andersen and Gill
(1982) that 3 5 3,.
Proof of Theorem 2

Fix k. The hypotheses on f, and conditions b, e, and f imply
that

/ (4 (0)/ S (Bo w)}| = Op(n'’?),

0

1£a(£)/ S (Bo, )] = Op(1).

Due to condition (i),

(B.1)

/fn(u)dAOk(U;ﬁO)—/ Fr(u) Aok (u) du

- / (Falw)/S (Bo,u)} dMos. (1) + 0p(1), (B2)

which, by (B.1) and Lemma A.1, converges in probability to 0 uni-
formly over [0, 7]. Conditions e and f entail that ||S{” (3*,¢)"* —
S8 (Bo, )|l = op(1). Thus

(u) dAon(u; B°) - / Fa () dox (3 Bo)

which, combined with the convergence to 0 of (B.2), completes
the proof of (11). The triangle inequality, (11), and condition d
yield (12).

Proof of Theorem 3
Clearly,

n?{Aok(t; B) — Aok(t)}
n'2{Aok(t; Bo) ~ Aok(t)}

+ 02 {Aok(t; B) — Aok (t; Bo)}. (B.3)
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By Lemma A.l and the arguments given in the proof of Theorem
2, the first term on the right side of (B.3) can be written as

nl/Q{AOk(t; 60) —_— Ag}c(t)}
dM . (v)

t
_ —1/2/
=nNn
0 s,(cm(ﬂ[).u)

where, throughout this proof, o,(1) is uniform in ¢ < 7. By the
Taylor series expansion, the second term on the right side of (B.3)
becomes

n' 2 { Aok (t; B) — Tn'2(3 - By), (B.5)

where (3* is on the line segment between ,6 and (3. By Lemma
1, Theorem 2, and condition e, Hy (3", t) = hy(t) +0,(1). It then
follows from (B.3)~«(B.5) and (8)}<10) that

+0p(1), (B.4)

Aok (t;80)} = Hi(B" . 1)

n' 2 { Ao (t; B) — Aex(t)} = n~ /2 }:\m ) + 0p(1),

i=1

which is essentially a sum of n iid random variables. Thus, by the
multivariate central limit theorem, the finite-dimensional distribu-
tions of W(t) are asymptotically the same as those of W(t).

We now show the tightness of W. For each k and [, de-
fine Q1 xi(t) = [ st (Bo,w) "d{n"V2M.x(u)}, and Qa2 k(t) =
h (1) n 1’2([3 ~ Bo). Obviously, n"/2{Aox(t; B) — Aok(t)} =
Q1 {t) + Q2,x(t) + 0,(1). Because D[0,7]¥ has been defined
using the uniform metric, the tightness of W will follow from
the tightness of Q1 . and Q21 (k=1,...,K;l=1,...,L). By
conditions d and f, Q; x; is a square-integrable martingale with re-
spect to the filtration Vi_; F¢ :xi. The tightness of Q1 x; thus fol-
lows from standard martingale proof's (Pollard 1984, thm. VIII.13).
The tightness of Q2 % (+) follows easily from condition f and Corol-
lary 1.

Proof of Theorem 4

Define W(t) = {W1(t),..., Wk (t)}7, where Wi(t) = n~1/2
S ()G (k = 1,...,K). By the proof of Theorem 3,
n~VHW(1),..., U.k(t)}7 converges weakly to W(t) uncondi-
tionally. Thus, by the conditional multiplier central limit theorem
(van der Vaart and Wellner 1996, thm. 2.9.6), W converges weakly
in probability to W conditional on the data. To complete the proof,
it suffices to show that ||Wi(t) — Wi ()| 2 0, where the conver-
gence is not conditional on the data.

Note that ||Wy(t) — Wi (t)| is bounded above by

L
=1

n—1/22 {S7(8. Xu) ™ =~ sV (Bo, Xuw) ™'}

i=1

X A (X < )Gy

o IRt

» dﬁ.o;c (u; ,B)
528, w)

-1/2 Z eﬁgz’“(“’lﬁkl(u)(}i}

i=1
_dAok(u
5(0) ,30711')

n
- -
i n-1/2 Z {eﬂ Zi(t) _ eﬁ[f Zikl(t)}Y;k[(t)Gg

-3

=1
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X /T LS',(CO)(,BAJLL)_1 dAox(u: B)

0

n |
+ [[{(H(B.OTAB) ™ - he()TAT 2 Y W, G

+ hk(t)TA“ln“l/QZ (Wi — wi )Gy

i=1

(B.6)

The first term of (B.6) converges to O in probability by Lemma
A.3 and the fact that

157807 = s (Bo.t) 7| B0 (B.7)
The second term of (B.6) converges to 0 by Theorem 2, Lemma
A3, and (B.7). The normed factor in the third term converges to
0 by Lemmas A.3 and I. This fact, together with conditions e and
f and Theorem 2, implies the asymptotic negligibility of the third
term. The asymptotic negligibility of the fourth term follows from
condition ¢, the uniform convergence of Hk(,@, t) and A(B), and
the fact that n~ /23" W,.G; converges in distribution. The

last term goes to 0 because n= /23" (Wi —w,.)G; 5 0. This
completes our proof.

[Received April 1997. Revised March 1998.]
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