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INTRODUCTION

Searching for genetic determinants of complex
diseases (e.g., hypertension, bipolar disorder,
cancer, diabetes, and schizophrenia) is one of the
most important challenges in human genetics.
Complex diseases are likely affected by an array
of genetic and environmental factors, as well as
their interactions. It is widely believed that the
genetic dissection of these diseases requires
association studies, which explore the relation-
ships between genetic variants, such as single-
nucleotide polymorphisms (SNPs) and disease
phenotypes [Risch, 2000; Botstein and Risch,
2003]. In fact, there is now a proliferation of
SNP-based association studies worldwide, thanks
to the availability of dense SNP maps across the

human genome [International SNP Map Working
Group, 2001; International HapMap Consortium,
2003] and the continuing improvement in geno-
typing efficiency.

There are several options in designing popula-
tion-based association studies. The simplest is the
cross-sectional design, which collects phenotype
and SNP data on a random sample of individuals.
This design is preferable if the disease of interest
is common or if one is interested in some disease-
related traits, such as blood pressure. For rare
diseases, it is more cost-effective to adopt the case-
control design, which collects data retrospectively
on a sample of cases (i.e., diseased individuals)
and a sample of controls (i.e., disease-free indivi-
duals). If one is interested in the age at onset of
a disease, then it is desirable to follow a cohort
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of at-risk individuals over time and record their
times of disease occurrence.

For all the aforementioned study designs,
standard statistical methods can be used to assess
the association between a particular SNP and a
disease phenotype. The information content in
any single SNP, however, is very limited. It is
desirable to combine information from multiple
SNPs through the use of haplotypes. Haplotypes,
which are specific combinations of nucleotides at
several tightly linked SNPs on the same chromo-
some of an individual, incorporate the linkage
disequilibrium information and correspond di-
rectly to protein sequences. The use of SNP-based
haplotypes may offer more powerful tests of
genetic associations than the use of individual
SNPs, especially when the causal SNPs are not
typed or when multiple mutations occur in cis
position [Akey et al., 2001; Fallin et al., 2001;
Morris and Kaplan, 2002; Schaid et al., 2002;
Zaykin et al., 2002; Botstein and Risch, 2003;
Schaid, 2004]. Because the actual number of
haplotypes tends to be much smaller than the
number of all possible haplotypes, haplotyping
also represents a data-reduction strategy.

Routine genotyping procedures do not provide
gametic phase information, so that only unphased
genotypes rather than haplotypes are directly
measured. A number of authors [e.g., Clark,
1990; Excoffier and Slatkin, 1995; Stephens et al.,
2001; Zhang et al., 2001; Niu et al., 2002; Qin et al.,
2002] developed methods to estimate haplotype
frequencies or infer individual haplotypes from
unphased genotype data. To make inferences
about a haplotype-disease association, one may
then relate the probabilistically constructed hap-
lotypes to the disease phenotype through a
regression model [e.g., Zaykin et al., 2002]. This
approach fails to account for the variation due to
haplotype estimation. More important, it pro-
duces biased and inefficient estimators of regres-
sion parameters, especially when the effect sizes
are large or haplotype uncertainty is high [e.g.,
Kraft et al., 2005].

Several methods have been proposed to make
proper inferences about the effects of haplotypes
on disease phenotypes. Virtually all these meth-
ods are related to likelihood. It is useful to
distinguish between the prospective and retro-
spective likelihoods. For cross-sectional and co-
hort studies, it is natural to use the prospective
likelihood, which pertains to the probability of a
phenotype given a genotype. For case-control
studies, the sampling is conditional on the case-

control status, so it is more appropriate to use the
retrospective likelihood, which is the probability
of a genotype given a phenotype. For the conven-
tional logistic regression analysis of case-control
data, maximizing the prospective or retrospective
likelihood yields the same estimator of the odds
ratio [Prentice and Pyke, 1979]. This equivalence,
however, requires an unrestricted distribution of
the exposure, and does not hold when the
exposure of interest is the diplotype (i.e., haplo-
type pair), because its distribution has to be
restricted in the statistical analysis due to incom-
plete exposure data (i.e., phase ambiguity).

Motivated by the equivalence of the prospective
and retrospective likelihoods for case-control
studies with complete exposure data, Zhao et al.
[2003] developed an estimating function to
approximate the expectation of the complete-data
prospective-likelihood score function given the
observed data. This method assumes rare diseases
and is not statistically efficient. Epstein and Satten
[2003] derived a clever retrospective likelihood for
the relative-risk parameter. Currently, this method
does not allow for environmental variables. Stram
et al. [2003] proposed a conditional likelihood for
the odds ratio assuming that cases and controls
are chosen with known probabilities from the
source population, and did not allow for environ-
mental variables either. As mentioned above, it is
desirable to accommodate environmental vari-
ables, since complex diseases are likely to be
influenced by environmental exposures and gene-
environment interactions. For cross-sectional stu-
dies, Schaid et al. [2002] and Lake et al. [2003]
described likelihood-based methods under gener-
alized linear models. Lin [2004] considered pro-
portional hazards regression for cohort studies.
All the aforementioned literature assumes Hardy-
Weinberg equilibrium. Simulation results [Lake
et al., 2003; Satten and Epstein, 2004] showed that
departures from Hardy-Weinberg equilibrium can
severely bias the analysis.

In this article, we present a general approach to
estimating haplotype-disease associations. For
case-control studies, we incorporate environmen-
tal variables and provide efficient estimators. For
cross-sectional and cohort studies, we accommo-
date more flexible models than the existing
literature. In addition, we explore case-cohort
and nested case-control designs [Kalbfleisch and
Prentice, 2002, p. 339] for cohort studies, under
which only a subset of the cohort members needs
to be genotyped. For all study designs, we
allow Hardy-Weinberg disequilibrium. We describe
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appropriate likelihoods for all study designs and
disease phenotypes. Except for cross-sectional
studies, the likelihoods involve high-dimensional
parameters. Thus, there are considerable theore-
tical and numerical challenges. In two statistical
papers [Lin and Zeng, 2006; Zeng et al., 2005], we
showed that the maximum likelihood estimators
are approximately unbiased, normally distributed,
and statistically efficient, and we derived simple
and efficient algorithms to compute the maximum
likelihood estimators and their variance estima-
tors. In this article, we briefly describe those
theoretical results and numerical algorithms; we
refer interested readers to the two statistical
papers for details. We present an application to
case-control data from the Carolina Breast Cancer
Study [Newman et al., 1995; Millikan et al., 2003].

METHODS

Suppose that each individual is genotyped at M
tightly linked biallelic SNPs. At each SNP site, the
two possible alleles are denoted by 0 vs. 1. Thus,
each haplotype h is an ordered sequence of M
numbers of zeros and ones. The total number of
possible haplotypes is K 5 2M, although the actual
number of haplotypes consistent with the ob-
served data is often much smaller. For k 5 1 ,y, K,
let hk denote the kth possible haplotype. Figure 1
shows the four possible haplotypes for two SNPs.

For each individual, the multi-SNP genotype is
an ordered sequence of M numbers of zeros, ones,
and twos. Let H denote the diplotype (i.e., the pair
of haplotypes on the two homologous chromo-
somes) of an individual, and G the corresponding
(unphased) genotype. Note that G codes the
number of ‘‘1’’ alleles at each locus. We write
H 5 (hk, hl) if the individual’s diplotype consists of
hk and hl, in which case G 5 hk1hl. We cannot
determine H on the basis of G if the individual is
heterozygous at more than one SNP or if any SNP
genotype is missing. For the case of two SNPs
shown in Figure 1, if G 5 (2, 1), then H 5 (h3, h4);
if G 5 (1, 1), then H 5 (h1, h4) or H 5 (h2, h3).

Let Y be the phenotype of interest, and X be a
set of environmental variables or covariates. In
association studies, we are interested in estimating
the effects of X and H on Y. Such a relationship
can be characterized by the conditional density
function P(Y|X, H; y) indexed by a set of
parameters y. There are various choices for the
association or disease model. Suppose that h� is
the target haplotype of interest, and Y is a binary
disease indicator. In the absence of covariates,
we may employ a logistic regression model with
the linear predictor a1bI(hk 5 hl 5 h�) under a
recessive model, a1b{I(hk 5 h�)1I(hl 5 h�)�I(hk 5

hl 5 h�)} under a dominant model, a1b{I(hk 5 h�)
1I(hl 5 h�)} under an additive model, and a1

b1{I(hk 5 h�)1I(hl 5 h�)}1b2I(hk 5 hl 5 h�) under a
codominant model, where hk and hl are the pair of
haplotypes in H, and IðAÞ takes the value 1 or 0,
dependent on whether the event A is true or false.
The codominant model includes the other three
models as special cases. The codominant model
with gene-environment interactions has the linear
predictor

aþb1fIðhk ¼ h�Þ þ Iðhl ¼ h�Þg þ b2Iðhk ¼ hl ¼ h�Þ þ b3
0X

þb4
0fIðhk ¼ h�Þ þ Iðhl ¼ h�ÞgX þ b5

0Iðhk ¼ hl ¼ h�ÞX:

ð1Þ

Here, y consists of b1 ,y, b5 and a, where a is the
intercept and the bs are log odds ratios.

Although we are interested in how H affects Y,
we observe G instead of H. With such missing
data, it is in general not possible to estimate y
without imposing some restrictions on the dis-
tribution of H. Virtually all the published work
on haplotype inference requires the diplotype dis-
tribution to satisfy Hardy-Weinberg equilibrium,
such that

pkl ¼ pkpl; k; l ¼ 1 ; . . . ; K ð2Þ

where pkl is the probability that H consists of hk

and hl, and pk is the probability that a particular
haplotype is hk. It is useful to consider the
following forms of departures from Hardy-Wein-
berg equilibrium:

pkl ¼
p2

k þ rpkð1� pkÞ; k ¼ l;
ð1� rÞpkpl; k 6¼ l

�
ð3Þ

and

pkl ¼
p2

k=ð1� rþ r
PK

j¼1 p2
j Þ; k ¼ l;

ð1� rÞpkpl=ð1� rþ r
PK

j¼1 p2
j Þ; k 6¼ l

(
ð4Þ

Fig. 1. Possible haplotype configurations with 2 SNPs.
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where 0rpkr1, and
PK

k¼1 pk ¼ 1. In (3), r is
called the inbreeding coefficient or fixation index
[Weir, 1996, p. 93]. Both (3) and (4) reduce to
(2) if r5 0. There are excess homozygosity (i.e.,
pkk4p2

k ; k ¼ 1 ; . . . ; K) and excess heterozygosity
(i.e., pkkop2

k ; k ¼ 1 ; . . . ; K) under r40 and ro0,
respectively. Satten and Epstein [2004] considered
condition (3) for the control population under the
case-control design.

We denote the probability distribution of H
by P(H; g), where g includes pk (k 5 1 ,y, K) and
r. Our methods apply to conditions (2), (3), and
(4) unless otherwise indicated. We assume that X
is independent of H conditional on G. We use SðGÞ
to denote the collection of diplotypes that are
compatible with genotype G, i.e., the diplotypes
(hk, hl) such that hk1hl 5 G. We allow missing
genotypes. If G is missing, then SðGÞ is expanded
accordingly.

CROSS-SECTIONAL STUDIES

A cross-sectional study selects a random sample
of n individuals from the source population and
measures the phenotype, genotype, and covariates
for each individual. The data consist of (Yi, Xi, Gi)
(i 5 1,y, n). The phenotype or trait Y can be
discrete or continuous, univariate or multivariate.
For a univariate trait, the association model
P(Y|X, H; y) may take the form of a generalized
linear model [McCullagh and Nelder, 1989] with
the linear predictor given in (1). In particular, the
logistic and linear regression models may be
chosen for the binary and quantitative traits,
respectively. If the trait is measured repeatedly
in a longitudinal study, then a generalized linear
mixed model [Diggle et al., 2002] may be suitable.

The likelihood function for parameters y and g
is proportional toYn

i¼1

X
Hi2SðGiÞ

PðYijXi;Hi; yÞPðHi; gÞ: ð5Þ

We may maximize (5) directly by the standard
Newton-Raphson algorithm, or indirectly by the
expectation-maximization (EM) algorithm [Demp-
ster et al., 1977]. In the EM algorithm, which is
described in Appendix A, the haplotypes are
treated as missing data. The maximum likelihood
estimators (MLEs) are consistent and asymptoti-
cally normal with a covariance matrix that can be
consistently estimated by the inverse of the
observed Fisher information matrix. In other
words, the MLEs of y and g are, for large samples,
approximately normal with means y and g, and

with the covariance matrix being the negative
inverse of the second derivative matrix of the log-
likelihood evaluated at the MLEs. Furthermore,
the MLEs are asymptotically efficient in that they
have the smallest variances among all possible
estimators of y and g, at least for large samples.

CASE-CONTROL STUDIES WITH KNOWN
POPULATION TOTALS

Under a case-control design, we obtain separate
random samples of cases and controls from a
source population. Suppose that the total numbers
of cases and controls in the source population are
known. This information is often available from
hospital records, disease registries, and official
statistics [Scott and Wild, 1997]. The case-control
sample may be drawn from a cohort study, in
which case the cohort serves as the source
population with known population totals. If the
phenotype pertains to a binary disease indicator,
then the association model P(Y|X, H; y) may be a
logistic, probit, or complementary log-log regres-
sion model. When there are more than two disease
categories, the proportional odds model, the
multivariate probit, and multivariate logistic
regression models may be used.

Let n and N denote the total numbers of
individuals in the case-control sample and the
source population, respectively. For individuals in
the case-control sample, the data take the same
form as in the situation of a cross-section study.
For the (N�n) individuals not selected, we
let Yj denote the disease status for the jth subject,
j 5 n11, y, N.

The likelihood function can be written as

Yn

i¼1

X
Hi2SðGiÞ

PðYijXi;Hi; yÞPðHi; gÞPðXijGiÞ

( )

�
YN

j¼nþ1

X
X;G

X
H2SðGÞ

PðYjjX;H; yÞPðH; gÞPðXjGÞ

( )
ð6Þ

where P(X|G) is the conditional density function
of X given G, and the summation inside the
second product is taken over all possible values of
X and G. We refer to P(X|G) as a nuisance
parameter, in that we are not interested in such
parameters, although they cannot be eliminated
from the likelihood and thus have to be estimated.
If there are continuous covariates, then P(X|G) is
an infinite-dimensional nuisance parameter in
that P(X|G) is a continuous function in X for
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each G. The presence of infinite-dimensional
nuisance parameters poses considerable chal-
lenges, both numerically and theoretically.

We can maximize the likelihood by the Newton-
Raphson algorithm or by the EM algorithm
described in Appendix B. The resultant MLEs
are again consistent, asymptotically normal, and
asymptotically efficient [Lin and Zeng, 2006]. The
variances of MLEs for y and g can be estimated by
the profile likelihood method [Murphy and van
der Vaart, 2000]. We can use the likelihood ratio
statistics to make inferences about y and g without
estimating the variances.

CASE-CONTROL STUDIES WITH UNKNOWN
POPULATION TOTALS

Under the traditional case-control design, we
measure X and G on n1 cases (Y 5 1) and n0

controls (Y 5 0) without any knowledge of the
population totals. Because the sampling is condi-
tional on the case-control status and the popula-
tion totals are unknown, it is necessary to use the
retrospective likelihood, which takes the form

Yn

i¼1

P
Hi2SðGiÞ

PðYijXi;Hi; yÞPðHi; gÞPðXijGiÞP
X;G

P
H2SðGÞ

PðYijX;H; yÞPðH; gÞPðXjGÞ

where n 5 n01n1. The parameters in this like-
lihood may not be identifiable, in that different
parameter values may yield the same value of the
likelihood. When the parameters are identifiable,
the MLEs have the desirable theoretical properties
[Lin and Zeng, 2006].

Rare disease is the main motivation for the case-
control design. For the logistic regression with
rare disease, P(Y|X,H; y) is approximately equal
to expfYðaþ b0ZðX; HÞÞg, where ZðX; HÞ is a
specific function of X and H. Then the likelihood
becomes

Yn

i¼1

P
Hi2SðGiÞ

expfYib
0ZðXi;HiÞgPðHi; gÞPðXijGiÞP

X;G

P
H2SðGÞ

expfYib
0ZðX;HÞgPðH; gÞPðXjGÞ : ð7Þ

Like (6), this likelihood involves the infinite-
dimensional nuisance parameters P(X|G). It is
considerably more challenging to deal with (7)
than (6), both theoretically and computationally.
Nevertheless, the parameters in (7) are identifi-
able, and the MLEs are consistent, asymptotically
normal, and asymptotically efficient [Lin and
Zeng, 2006]. An efficient and stable algorithm to

obtain the MLEs for b and g and to estimate their
variances is provided in Appendix C.

In the absence of covariates, (7) reduces to the
retrospective likelihood of Epstein and Satten
[2003]. This is not surprising, since Epstein and
Satten [2003] worked with the relative-risk para-
meter, which is approximately the same as the
odds ratio when the disease is rare.

COHORT STUDIES

In a cohort study, we follow a random sample of
n at-risk individuals to ascertain their ages at
onset of disease. The individuals who are with-
drawn prematurely from the study or who are
disease-free at the end of the study have censored
observations, in that their ages at onset are only
known to be beyond their durations of follow-up.
Let Y denote the age at onset and C denote the
censoring time. We assume that C is independent
of Y and H conditional on X and G. The data
consist of ðeYi;Di;Xi;GiÞ (i 5 1,y,n), whereeYi ¼ minðYi;CiÞ, and Di ¼ IðYi � CiÞ. The covari-
ates X are allowed to vary over time.

It is convenient to employ the proportional
hazards model [Cox, 1972], which specifies that
the hazard function of Y conditional on X and H
takes the form

lðtjX;HÞ ¼ l0ðtÞexpfb0ZðXðtÞ;HÞg ð8Þ

where ZðXðtÞ;HÞ is a specific function of X(t) and
H, b is the corresponding set of log hazard ratio
parameters, and l0(t) is an arbitrary baseline
hazard function. Integrating both sides of (8)
yields the equivalent representation in terms of
the cumulative hazard function: LðyjX;HÞ ¼R y

0 expfb0ZðXðtÞ;HÞgdL0ðtÞ; where L0ðtÞ ¼
R t

0 l0ðsÞds.
Because the proportional hazards assumption
may be violated in applications, we consider a
broad class of transformation models,

LðyjX;HÞ ¼ Q

Z y

0

expfb0ZðXðtÞ;HÞdL0ðtÞg

� �
ð9Þ

where Q is an increasing function. If the covariates
do not depend on time, then equation (9) can be
written in the familiar linear model form: GðYÞ ¼
�b0ZðX;HÞ þ e; where G is an unknown transfor-
mation, and e is an error term with a known
distribution function F. The choices of the extreme-
value and standard logistic distributions for F yield
the proportional hazards model and the propor-
tional odds model [Pettitt, 1984], respectively.
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The likelihood takes the formYn

i¼1

X
Hi2SðGiÞ

lðeYijXi;HiÞ
Di exp �LðeYijXi;HiÞ

n o
PðHi; gÞ:

ð10Þ

We maximize this likelihood over b, g, and L0(t),
treating L0(t) as a step function with jumps only at
the observed disease occurrence times. The max-
imization can be carried out via an optimization
algorithm, such as fminunc of MATLAB, or the EM
algorithm described in Appendix D. The MLEs of
b and g are consistent, asymptotically normal, and
asymptotically efficient, and their variances
can be estimated by the observed information
matrix or by the profile likelihood method [Lin
and Zeng, 2006].

CASE-COHORT AND NESTED CASE-CONTROL
STUDIES

For large cohorts with rare diseases, it is not
cost-effective to genotype all cohort members. In
fact, there is little loss of efficiency in the statistical
inference by genotyping all the cases and a small
fraction of controls as opposed to all controls. The
most commonly used sampling procedures in-
clude nested case-control sampling, in which a
small number (typically in the range of 1–5) of
controls are matched to each case by random
sampling from the set of individuals who are
disease-free and under observation at the time of
occurrence of that case, and case-cohort sampling,
in which a random subcohort is selected from the
entire cohort [Kalbfleisch and Prentice, 2002, p.
339–342].

Suppose that a total of nc individuals is selected
for genotyping out of a cohort of size n. For these
individuals, the data consist of ðeYi;Di;Xi;GiÞ (i 5 1,
y, nc). For those not selected for genotyping, the
data consist of ðeYj;Dj;XiÞ (j 5 nc11, y, n). As in
the case of full cohort sampling, we may employ
the proportional hazards model given in (8) or the
general class of transformation models given in (9).

The likelihood takes the form

Ync

i¼1

X
Hi2SðGiÞ

lðeYijXi;HiÞ
Diexp �LðeYijXi;HiÞ

n o
PðHi; gÞ

�
Yn

j¼ncþ1

X
H

lðeYjjXj;HÞ
Dj exp �LðeYjjXj;HÞ

n o
PðH; gÞ

where the summation inside the second product is
taken over all possible values of H [Zeng et al.,
2005]. We maximize this function over b, g, and

L0(t), treating L0(t) as a step function with jumps
only at the observed times of disease occurrence.
The maximization can be carried out through
an optimization algorithm or the EM algorithm
given in Appendix D. The MLEs of b and g are
consistent, asymptotically normal, and asympto-
tically efficient, and their variances can be
estimated by the observed information matrix or
by the profile likelihood method [Zeng et al., 2005].

RESULTS

CAROLINA BREAST CANCER STUDY

Breast cancer is influenced by a variety of
genetic and environmental factors. The Carolina
Breast Cancer Study (CBCS) is a population-based
case-control study designed to identify the causes
of breast cancer [Newman et al., 1995; Millikan
et al., 2003]. Cases were identified from the North
Carolina Central Cancer Registry, and controls
were identified from Division of Motor Vehicles
and Health Care Financing Administration lists.
Cases were enrolled between 1993–2001, with
oversampling of African American and younger
women. Controls were frequency-matched to
cases based on age (75 years) and race. Informa-
tion on established and potential risk factors was
obtained from in-person interviews. Blood sam-
ples were collected at time of interview.

In total, 2,311 cases (1,417 whites and 894
African Americans) and 2,022 controls (1,234
whites and 788 African Americans) were enrolled.
Ages ranged from 26–74. There is a current effort
to study the effects of smoking and several
candidate genes, as well as their interactions, on
the risk of breast cancer. In this article, we focus on
three SNPs in the XRCC1 gene: codon 194 C to T,
which leads to an amino-acid substitution of Arg
to Trp, codon 280 G to A, which leads to an amino-
acid substitution of Arg to His, and codon 399 G to
A, which leads to an amino-acid substitution of
Arg to Gln. For these three SNPs, codons 194, 280,
and 399, the genotype data are missing in 11.1%,
11.9%, and 13.2% of cases, and in 10.1%, 10.5%,
and 11.1% of controls.

Based on data from the control group, haplotype
frequencies are estimated at 0.62, 0.27, 0.07, and
0.04 for haplotypes CGG, CGA, CAG, and TGG,
respectively. The other four possible haplotypes
have zero estimated frequencies, and the inbreed-
ing coefficient is estimated at 0.04. We fit the
logistic regression models with various genetic
hypotheses. All models include age, race, and

(11)
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smoking duration. The last variable has five
categories: no active and no environmental tobac-
co smoking (ETS) after age 18, no active but ETS
after 18, r10 years, 11–20 years, and 420 years.
The first group serves as the reference in the
analysis. A total of 16 subjects had no information
on smoking duration, and those subjects were
excluded from the analysis. There are no missing
data on age or race. We used the retrospective
likelihood given in (7), but with a slight modifica-
tion to account for the unequal sampling prob-
abilities. The modified likelihood involves an
offset term, which is the natural logarithm of the
ratio of the sampling probability for a case in the
specific age-race stratum to the sampling prob-
ability for a control in the specific age-race
stratum.

Tables I and II display the estimates for the
effects of haplotypes and smoking duration, as
well as their interactions, for target haplotypes
CGG and CGA, respectively. Neither the haplo-
type effects nor haplotype-smoking interactions
are significant for haplotypes CAG and TGG, and
thus the results are not shown here. As expected,
the effects of age and race are highly significant,
though the results are not shown.

It is desirable to select an appropriate model
among all potential models. We suggest selecting
the model that minimizes the information criter-
ion of Akaike [1985] (AIC), which is �2 log L12p,
where L is the likelihood evaluated at the MLEs,
and p is the number of parameters in the model.
Based on the values of the AIC, we select the

dominant model for haplotype CGG and the
additive model for haplotype CGA, although the
values of the AIC are fairly close between the
additive and dominant models for both haplo-
types. The results reported in Tables I and II
provide evidence for haplotype and smoking
effects, as well as haplotype-smoking interactions.
Specifically, haplotype CGA has a strong main
effect as well as a strong interaction with
environmental tobacco smoking in the develop-
ment of breast cancer. A more comprehensive
investigation involving multiple candidate genes
and other smoking variables will be reported
elsewhere.

SIMULATION STUDIES

We used Monte Carlo simulation to evaluate the
proposed methods in realistic settings. We gener-
ated haplotypes from the observed haplotype
distribution of the XRCC1 gene in the CBCS
study. We set 10% of the genotype data to be
missing for each of the three SNPs. We focused on
the CGA haplotype. We generated disease inci-
dence from the logistic regression model with
additive genetic effects:

logitPðY ¼ 1jX;HÞ ¼ aþ b1fIðhk ¼ h�Þ þ Iðhl ¼ h�Þg

þ b2X þ b3fIðhk ¼ h�Þ þ Iðhl ¼ h�ÞgX

where h� is the CGA haplotype, hk and hl are the
pair of haplotypes in H, and the environmental
variable X is a Bernoulli random variable with 0.3
success probability. The parameters b1, b2, and b3

TABLE I. Estimates of haplotype and smoking-duration effects for haplotype CGGa

Codominant model

Variable Recessive model Dominant model Additive model Additive Recessive

Haplotype �0.119 (0.115) �0.348 (0.135)��� �0.169 (0.078)�� �0.331 (0.142)�� 0.283 (0.211)
Dur1 0.010 (0.097) �0.135 (0.158) �0.114 (0.134) �0.134 (0.158)
Dur2 �0.004 (0.121) �0.091 (0.199) �0.041 (0.169) �0.091 (0.199)
Dur3 0.022 (0.126) �0.259 (0.220) �0.127 (0.180) �0.259 (0.220)
Dur4 0.260 (0.106)�� 0.004 (0.177) 0.118 (0.148) 0.004 (0.177)
Hap � Dur1 0.171 (0.131) 0.254 (0.164) 0.158 (0.088)� 0.203 (0.176) �0.091 (0.262)
Hap � Dur2 �0.006 (0.170) 0.105 (0.207) 0.030 (0.113) 0.123 (0.222) �0.166 (0.334)
Hap � Dur3 0.093 (0.173) 0.379 (0.227)� 0.153 (0.119) 0.384 (0.241) �0.395 (0.349)
Hap � Dur4 0.099 (0.143) 0.353 (0.182)� 0.149 (0.097) 0.351 (0.194)� �0.348 (0.285)

Log-likelihood �9,219.43 �9,216.61 �9,217.61 �9,215.87

aStandard error estimates are shown in parentheses. Dur1, Dur2, Dur3, and Dur4 denote, respectively, no active but ETS after 18, r10 years,
11–20 years, and 420 years of smoking. Under codominant model, genetic effects consist of additive and recessive effects, and main effects
of smoking duration are shown in left column.
�Po0.10.
��Po0.05.
���Po0.01.
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are the log odds ratios corresponding to the main
effect of the CGA haplotype, the main effect of
the environmental variable, and the haplotype-
environment interaction, respectively. We chose
a5�4.7 and �3.1 to yield disease rates of
approximately 1% and 5%. For making inferences
on b1, we set b2 5 b3 5 0.3, and varied b1 from �0.3
to 0.3; for making inferences on b3, we set
b1 5b2 5 0.3, and varied b3 from �0.3 to 0.3. We
selected case-control samples with n1 5 n0 5 250,
500, or 1,000. In the analysis, we assumed
unknown population totals, and used the
algorithm described in Appendix C to calculate
MLEs based on (7) and estimate their variances.
The results of these studies are summarized in
Table III.

The estimators of the haplotype effect and
haplotype-environment interaction have little
biases. The variance estimators accurately reflect
the true variations of the parameter estimators.
The confidence intervals have correct coverage
probabilities. The association tests have proper
type 1 errors and reasonable powers. As expected,
the powers for detecting haplotype effects are
higher than those for detecting haplotype-envir-
onment interactions.

We also conducted simulation studies for
the case-cohort design. We generated times to
disease occurrence from the proportional hazards
model

lðtjX;HÞ ¼2t exp½b1fIðhk ¼ h�Þ þ Iðhl ¼ h�Þg

þ b2X þ b3fIðhk ¼ h�Þ þ Iðhl ¼ h�ÞgX�

where X and H have the same distributions as in
the case-control studies, and b1, b2, and b3 pertain
to the log hazard ratios. We chose the values of b1,
b2, and b3 in the same manner as in the case-
control studies. We considered cohort studies of
5,000 individuals, and chose censoring distribu-
tions to produce an average of 250 cases per study.
We genotyped all cases and 250, 500, or 1,250
controls in a study. We calculated the MLEs of the
log hazard ratios using the algorithm of Appendix
D, and estimated their variances by the profile
likelihood method. The results reported in
Table IV show that the proposed methods perform
well. The fact that the variances of the MLEs
decrease slowly as the number of controls in-
creases indicates that the case-cohort design is
highly cost-effective.

DISCUSSION

All the numerical results presented in this article
pertain to the comparison of a target haplotype
with all other haplotypes. Another type of
analysis is to compare several haplotypes to a
reference haplotype within the same model. One
may also choose a set of haplotypes as the target,
or compare several sets of haplotypes. Further-
more, one may wish to include haplotypes from
different genes in the same model. We can modify
our methods and algorithms to perform all these
types of analyses.

It is desirable to adjust for the effects of multiple
comparisons when considering several haplo-

TABLE II. Estimates of haplotype and smoking-duration effects for haplotype CGAa

Codominant model

Variable Recessive model Dominant model Additive model Additive Recessive

Haplotype 0.337 (0.174)� 0.202 (0.111)� 0.197 (0.085)�� 0.171 (0.115) 0.079 (0.239)
Dur1 0.107 (0.087) 0.218 (0.105)�� 0.216 (0.101)�� 0.218 (0.105)��

Dur2 0.004 (0.109) 0.003 (0.135) 0.013 (0.130) 0.003 (0.135)
Dur3 0.065 (0.113) 0.181 (0.136) 0.157 (0.131) 0.181 (0.136)
Dur4 0.315 (0.095)��� 0.373 (0.115)��� 0.373 (0.111)��� 0.373 (0.115)���

Hap � Dur1 �0.356 (0.218)� �0.296 (0.127)�� �0.246 (0.097)�� �0.257 (0.134)� 0.047 (0.302)
Hap � Dur2 �0.097 (0.270) �0.018 (0.162) �0.030 (0.123) 0.001 (0.171) �0.098 (0.377)
Hap � Dur3 �0.096 (0.277) �0.256 (0.167) �0.171 (0.125) �0.267 (0.178) 0.324 (0.395)
Hap � Dur4 �0.190 (0.231) �0.154 (0.137) �0.128 (0.104) �0.131 (0.145) 0.013 (0.323)

Log-likelihood �9,217.89 �9,216.83 �9,215.99 �9,214.98

aStandard error estimates are shown in parentheses. Dur1, Dur2, Dur3, and Dur4 denote, respectively, no active but ETS after 18, r10 years,
11–20 years, and 420 years of smoking. Under codominant model, genetic effects consist of additive and recessive effects, and main effects
of smoking duration are shown in left column.
�Po0.10.
��Po0.05.
���Po0.01.
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type configurations in the same study. This is
especially important in genome-wide studies,
which involve hundreds or thousands of haplo-
types. The Bonferroni correction would be overly
conservative because of the correlation of haplo-
types both within and between regions. Proper
multiple testing adjustments can be achieved by
permuting the data or by simulating the joint

distribution of the test statistics [see Lin, 2005].
These adjustments require the use of appropriate
test statistics, such as those presented in this article.

The proposed EM algorithms are relatively fast
and have good convergence properties. Naturally,
the computing time increases with the observed
number of haplotypes. When the number of SNPs
is large, the partition-ligation method of Niu et al.

TABLE III. Simulation results for case-control studiesa

Haplotype effect Haplotype-environment interaction

n0 5 n1

Disease
rate

Effect
size Bias SE SEE CP Power Bias SE SEE CP Power

250 1% �0.3 �0.004 0.181 0.181 0.952 0.383 �0.007 0.221 0.221 0.953 0.275
0.0 0.000 0.171 0.172 0.951 0.049 �0.005 0.204 0.205 0.950 0.050
0.3 0.002 0.167 0.166 0.951 0.446 �0.007 0.195 0.196 0.954 0.322

5% �0.3 �0.002 0.179 0.180 0.949 0.381 0.010 0.218 0.222 0.954 0.242
0.0 0.002 0.169 0.171 0.953 0.047 �0.007 0.205 0.206 0.953 0.047
0.3 0.010 0.165 0.166 0.951 0.470 �0.040 0.196 0.197 0.946 0.260

500 1% �0.3 �0.001 0.128 0.127 0.951 0.662 0.000 0.155 0.155 0.949 0.491
0.0 0.002 0.119 0.121 0.955 0.045 �0.004 0.145 0.144 0.948 0.052
0.3 0.003 0.116 0.117 0.952 0.740 �0.009 0.136 0.137 0.954 0.557

5% �0.3 0.002 0.125 0.127 0.953 0.654 0.015 0.158 0.155 0.946 0.452
0.0 0.007 0.121 0.120 0.952 0.048 �0.005 0.145 0.145 0.950 0.050
0.3 0.012 0.117 0.117 0.950 0.759 �0.041 0.138 0.138 0.941 0.465

1,000 1% �0.3 0.001 0.089 0.090 0.956 0.921 0.002 0.110 0.109 0.952 0.778
0.0 0.003 0.085 0.085 0.949 0.051 �0.001 0.102 0.101 0.950 0.050
0.3 0.003 0.082 0.082 0.950 0.956 �0.010 0.097 0.097 0.946 0.850

5% �0.3 0.001 0.088 0.089 0.953 0.921 0.015 0.111 0.109 0.943 0.744
0.0 0.005 0.086 0.085 0.946 0.054 �0.008 0.104 0.102 0.950 0.050
0.3 0.012 0.083 0.082 0.941 0.967 �0.043 0.098 0.098 0.930 0.744

aBias and SE are bias and standard error of MLE for effect size. SEE, mean of standard error estimator for MLE. CP, coverage probability of
95% confidence interval for effect size. Power pertains to 0.05-level Wald test of null hypothesis of zero effect size. Each entry is based on
5,000 replictates.

TABLE IV. Simulation results for case-cohort studiesa

Haplotype effect Haplotype-environment interaction

Controls Effect size Bias SE SEE CP Power Bias SE SEE CP Power

250 �0.3 �0.008 0.171 0.176 0.957 0.404 �0.009 0.206 0.204 0.951 0.319
0.0 �0.006 0.149 0.154 0.958 0.042 �0.004 0.187 0.185 0.950 0.050
0.3 �0.003 0.131 0.134 0.953 0.606 �0.001 0.173 0.172 0.949 0.414

500 �0.3 �0.007 0.158 0.161 0.953 0.474 �0.009 0.205 0.203 0.950 0.320
0.0 �0.005 0.136 0.139 0.954 0.046 �0.004 0.186 0.185 0.951 0.049
0.3 �0.002 0.119 0.121 0.954 0.696 �0.001 0.172 0.171 0.950 0.418

1,000 �0.3 �0.007 0.151 0.152 0.954 0.516 �0.009 0.205 0.202 0.948 0.323
0.0 �0.005 0.130 0.131 0.952 0.048 �0.004 0.185 0.183 0.950 0.050
0.3 �0.002 0.113 0.113 0.948 0.743 �0.001 0.171 0.169 0.951 0.430

aBias and SE are bias and standard error of MLE for effect size. SEE, mean of standard error estimator for MLE. CP, coverage probability
of 95% confidence interval for effect size. Power pertains to 0.05-level Wald test of null hypothesis of zero effect size. Each entry is based
on 5,000 replictates.
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[2002] and Qin et al. [2002] and other modifica-
tions can be adapted to improve computation
efficiency.

Latent population substructure or stratification
may bias the results in association studies. There
exist several statistical methods to adjust for the
effects of population stratification with the aid of
genomic markers that are informative about the
population substructure. It is fairly straightfor-
ward to incorporate genomic markers into our
likelihood framework so as to adjust for popula-
tion stratification.

This article is concerned with studies of un-
related individuals. Many genetic studies involve
multiple family members or relatives. This is
particularly the case if association studies are
embedded in linkage studies. Haplotype ambi-
guity can potentially be reduced by using the
genotype information from related individuals.
Inferences on haplotype effects need to account
for the intraclass correlation. We are currently
developing methods for inferring haplotype-dis-
ease associations in family studies.

We developed a general computer program that
implements the proposed methods. This program
is posted on the website: http://www.bios.unc.
edu/�lin.
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APPENDIX A

EM ALGORITHM FOR MAXIMIZING (5)

We provide an EM algorithm for the maximization of (5) by regarding Hi as missing data. The complete-
data likelihood is

Qn
i¼1 PðYijXi;Hi; yÞPðHi; gÞ: In the M-step of the EM algorithm, we solve the following

equations for y and g via the Newton-Raphson algorithm:

Xn

i¼1

E qlogPðYijXi;Hi; yÞ=qyjYi;Xi;Gi

� �
¼ 0;

Xn

i¼1

E qlogPðHi; gÞ=qgjYi;Xi;Gi

� �
¼ 0:

ðA1Þ

The conditional expectations in the above expressions are calculated in the E-step as follows: for any
random variable Vi,

EðVijYi;Xi;GiÞ ¼

P
Hi2SðGiÞ

ViPðYijXi;Hi; yÞPðHi; gÞP
Hi2SðGiÞ

PðYijXi;Hi; yÞPðHi; gÞ
ðA2Þ

where y and g are evaluated at their current estimates.
Under condition (3) with rZ0, the estimate of g can be obtained in a closed form. Specifically, let Bi be a

Bernoulli variable with success probability r, and let Q1i and Q2i be discrete random variables with
probability functions P(Q1i 5 (hk, hk)) 5 pk and P(Q2i 5 (hk, hl)) 5pkpl. Then BiQ1i1(1�Bi)Q2i has the same
distribution as Hi, and we can regard Bi, Q1i, and Q2i instead of Hi as missing. With this data
augmentation, the complete-data likelihood is proportional to

Yn

i¼1

PðYijXi;Hi; yÞrBið1� rÞ1�Bi
YK
k¼1

pBiIðQ1i¼ðhk;hkÞÞ

k

( YK
k;l¼1

ðpkplÞ
ð1�BiÞIðQ2i¼ðhk;hlÞÞ

)
:

Then (A1) has an explicit solution for g, which consists of r and pk,

br ¼ n�1
Xn

i¼1

EðBijYi;Xi;GiÞ
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and

bpk ¼c�1
Xn

i¼1

"
E BiIðQ1i ¼ ðhk; hkÞÞjYi;Xi;Gi

� �
þ2
XK

l¼1

E ð1� BiÞIðQ2i ¼ ðhk; hlÞÞjYi;Xi;Gi

� �#

where c is a normalizing constant such that
P

k bpk ¼ 1.

APPENDIX B

EM ALGORITHM FOR MAXIMIZING (6)

We provide an EM algorithm by treating Hi as missing data for all individuals, and Xi as missing data
for those not selected. For the latter individuals, we attach Xj and Hj to Yj (j 5 n11,y, N). In the M-step, we
solve the following equations for y and g,

Xn

i¼1

E qlogPðYijXi;Hi; yÞ=@yjYi;Xi;Gi

� �
þ
XN

j¼nþ1

E qlogPðYjjXj;Hj; yÞ=qyjYj

� �
¼ 0;

Xn

i¼1

E qlogPðHi; gÞ=qgjYi;Xi;Gi

� �
þ
XN

j¼nþ1

E qlogPðHj; gÞ=qgjYj

� �
¼ 0:

In addition, we estimate P(X|G) by

Pn
i¼1

IðXi ¼ X;Gi ¼ GÞ þ
PN

j¼nþ1

EfIðXj ¼ X;Gj ¼ GÞjYjg

Pn
i¼1

IðGi ¼ GÞ þ
PN

j¼nþ1

EfIðGj ¼ GÞjYjg

:

The conditional expectations are calculated in the E-step: for i 5 1,y,n, the conditional expectations are
given in (A2); for j 5 n11 ,y, N,

EðVjjYjÞ ¼

P
G;X

P
H2SðGÞ

VjPðYjjX;H; yÞPðH; gÞPðXjGÞP
G;X

P
H2SðGÞ

PðYjjX;H; yÞPðH; gÞPðXjGÞ

where y, g, and P(X|G) are evaluated at their current estimates. Under condition (3) with rZ0, the
data augmentation Hi 5 BiQ1i1(1�Bi)Q2i introduced in Appendix A can be used to yield an explicit
estimate of g.

APPENDIX C

CALCULATIONS OF MLES OF b AND g BASED ON (7)

It is desirable to calculate the MLEs of b and g by profiling the nuisance conditional density functions
P(X|G) out of the likelihood given in (7), i.e., by maximizing (7) over P(X|G) first. Although P(X|G) are
potentially infinite-dimensional, profiling (7) over P(X|G) is tantamount to profiling the following
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function over the small set of parameters {mG}

Xn

i¼1

Yilog
X

Hi2SðGiÞ

eb
0ZðXi;HiÞPðHi; gÞ

(
þ ð1� YiÞlog

X
Hi2SðGiÞ

PðHi; gÞ

)

þ
Xn

i¼1

ð1� YiÞlog
X

G

mG �
Xn

i¼1

X
G

IðGi ¼ GÞlog
X

Hi2SðGiÞ

eb
0ZðXi;HiÞPðHi; gÞ � mG þ n�1

1 mG

X
G

mG

( )

where mG is the number of times Gi 5 G in the sample [Lin and Zeng, 2006]. The covariance matrix for the
MLEs of b and g can be estimated by the sandwich estimator or the profile likelihood method.

If X is independent of G, then profiling (7) over P(X|G) is equivalent to profiling the following function
over the scalar parameter m:

Xn

i¼1

log
X

Hi2SðGiÞ

expfYib
0ZðXi;HiÞgPðHi; gÞpYifð1� pÞmg1�YiP1

Y¼0

P
H

expfYb0ZðXi;HÞgPðH; gÞpYfð1� pÞmg1�Y

26664
37775

where p 5 n1/n [Lin and Zeng, 2006]. This expression is the log-likelihood function for a cross-sectional
study in which the conditional distribution of Yi and Hi given Xi has the probability density function

~PðYi;Xi;Hi; y; gÞ ¼
expfYib

0ZðXi;HiÞgPðHi; gÞpYifð1� pÞmg1�YiP1
Y¼0

P
H

expfYb0ZðXi;HÞgPðH; gÞpYfð1� pÞmg1�Y

and in which Gi instead of Hi is observed. Thus, we can use the EM algorithm of Appendix A upon
replacing P(Yi|Xi,Hi; y) P(Hi; g) with ~PðYi;Xi;Hi; y; gÞ. In addition, the covariance matrix of the MLEs of y
and g can be estimated by the inverse of the observed Fisher information matrix. Under condition (3) with
rZ0, we can use the data augmentation Hi 5 BiQ1i1(1�Bi)Q2i described in Appendix A. The M-step can
then be simplified if we express ~PðY; X; H ¼ BQ1 þ ð1� BÞQ2; y; gÞ as

expfx0Yþ Yb0ZðX;HÞ þ
PK
k¼1

xkWkg

P
Y;B;Q1;Q2

expfx0Yþ Yb0ZðX;HÞ þ
PK
k¼1

xkWkg

where Wk 5 BI(Q1 5 (hk,hk))1(1�B) SlI(Q2 5 (hk, hl)) 1 I(Q2 5 (hl, hk)) (k 5 1 ,y, K), and work with the new
parameters (b, x0, x1,y,xK). Because the above density function yields a concave log-likelihood, the
corresponding MLEs are unique and can be easily obtained by the Newton-Raphson or EM algorithm.

APPENDIX D

EM ALGORITHMS FOR MAXIMIZING (10) AND (11)

We provide an EM algorithm for the maximization of (11) under model (8) by regarding Hi as missing
for those individuals selected for genotyping, and Gi as missing for those not selected. Note that (10) is a
special case of (11) with nc 5 n. In the M-step of the EM algorithm, we estimate b and g by solving the
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following equations

Xn

i¼1

Di

"
bEfZðXi;HiÞg �

Pn
j¼1

Ið ~Yj � ~YiÞbEfZðXj;HjÞe
b0ZðXj;HjÞg

Pn
j¼1

Ið ~Yj � ~YiÞbEfeb0ZðXj;HjÞg

#
¼ 0;

Xn

i¼1

bE qlogPðHi; gÞ=qg
� �

¼ 0

and estimate L0(t) by

Xn

i¼1

Ið ~Yi � tÞDiPn
j¼1

Ið ~Yj � ~YiÞbEfeb0ZðXj;HjÞg

:

The conditional expectations bEðViÞ are calculated in the E-step: for i 5 1, y, nc,

bEðViÞ ¼

P
Hi2SðGiÞ

Viexp Dib
0ZðXi;HiÞ � eb

0ZðXi;HiÞL0ð ~YiÞ
� �

PðHi; gÞP
Hi2SðGiÞ

exp Dib
0ZðXi;HiÞ � eb

0ZðXi;HiÞL0ð ~YiÞ
� �

PðHi; gÞ

where b, g, and L0 are evaluated at their current estimates; for j 5 nc11, y, n, the summation over
HiAS(Gi) is replaced by the summation over all possible values of Hi.

The data augmentation of Appendix A can again be used to obtain an explicit estimate of g under
condition (3) with rZ0. EM algorithms can also be developed for the class of models given in (9)
[see Zeng et al., 2005].
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