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Improving the Power of Association Tests for Quantitative Traits
in Family Studies

G. Diao and D.Y. Lin*
Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina

Association mapping based on family studies can identify genes that influence complex human traits while providing
protection against population stratification. Because no gene is likely to have a very large effect on a complex trait, most
family studies have limited power. Among the commonly used family-based tests of association for quantitative traits, the
quantitative transmission-disequilibrium tests (QTDT) based on the variance-components model is the most flexible and
most powerful. This method assumes that the trait values are normally distributed. Departures from normality can inflate
the type I error and reduce the power. Although the family-based association tests (FBAT) and pedigree disequilibrium tests
(PDT) do not require normal traits, nonnormality can also result in loss of power. In many cases, approximate normality can
be achieved by transforming the trait values. However, the true transformation is unknown, and incorrect transformations
may compromise the type I error and power. We propose a novel class of association tests for arbitrarily distributed
quantitative traits by allowing the true transformation function to be completely unspecified and empirically estimated
from the data. Extensive simulation studies showed that the new methods provide accurate control of the type I error and
can be substantially more powerful than the existing methods. We applied the new methods to the Collaborative Study on
the Genetics of Alcoholism and discovered significant association of single nucleotide polymorphisms (SNP) tsc0022400 on
chromosome 7 with the quantitative electrophysiological phenotype TTTH1, which was not detected by any existing
methods. We have implemented the new methods in a freely available computer program. Genet. Epidemiol. 30:301-313,
2006. © 2006 Wiley-Liss, Inc.
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INTRODUCTION

Complex human diseases are likely influenced
by multiple genetic and environmental factors,
with no particular gene having a singly large
effect. It is widely believed that the genetic
dissection of complex diseases requires associa-
tion studies to explore the correlations between
genetic variants, particularly single nucleotide
polymorphisms (SNPs), and disease phenotypes
[Risch, 2000; Botstein and Risch, 2003]. In fact, the
availability of dense SNP maps across the human
genome [International SNP Map Working Group,
2001; International HapMap Consortium, 2005]
has led to a proliferation of SNP-based association
studies worldwide.

© 2006 Wiley-Liss, Inc.

The case-control study is a widely adopted
strategy for association mapping. This study and
other population-based studies are relatively easy
to conduct but are prone to detecting spurious
association arising from population stratification.
Detection of the spurious association can be
avoided by employing family-based association
studies. Because it is difficult to collect a large
number of families, most family studies have
limited power to detect the moderate effects likely
to be contributed by disease genes. Thus, it is
critically important to employ the most powerful
statistical methods for family-based association
studies.

The transmission-disequilibrium test (TDT)
[Spielman et al., 1993] and various extensions
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[Martin et al., 1997, 2000; Boehnke and Langefeld,
1998; Horvath and Laird, 1998; Spielman and
Ewens, 1998] can be used to detect association for
dichotomous traits. The likelihood-based methods
can improve the power over the TDT [Schaid and
Sommer, 1993, 1994]. For many complex diseases,
quantitative phenotypes are more informative
than diagnostic categories in genetic analysis.
There have been tremendous recent interests in
the development of association tests for quantita-
tive traits and in the use of these methods for
mapping complex diseases.

The commonly used family-based tests of
association for quantitative traits fall into two
broad categories. The first category is based on
regression models. Allison [1997] introduced a test
for parents-offspring trios by using parental
genotypes to construct family-matched controls
in linear regression models. Allison et al. [1999]
developed a test for siblings by using a linear
regression model with random sibship effects.
Fulker et al. [1999] proposed a variance-compo-
nents method for the combined analysis of linkage
and association for sib pairs. Their method
involves modeling of the allelic means for testing
association, with simultaneous modeling of the
sib-pair covariance structure for testing linkage,
and controls for spurious association due to
population stratification by partitioning of the
mean effect of a locus into between- and within-
sibship components. Abecasis et al. [2000a,b]
generalized this method to nuclear families and
extended pedigrees and developed a program
called quantitative transmission-disequilibrium
tests (QTDT), which is widely used. Kistner and
Weinberg [2004, 2005] proposed a polytomous
logistic regression model by modeling the off-
spring genotype conditioning on the quantitative
trait and the parents’ genotypes.

The second category compares more directly the
transmissions among offspring with high trait
values to those of offspring with low trait values
[Rabinowitz, 1997; Lunetta et al., 2000; Monks and
Kaplan, 2000; Rabinowitz and Laird, 2000]. Laird
et al. [2000] represented the test statistic as the
covariance between genotype transmissions and
trait values and developed the popular FBAT
program. Monks and Kaplan [2000] proposed the
pedigree disequilibrium tests (PDT) to allow
missing parents and tests of association in the
presence of linkage. Lange et al. [2002] extended
the FBAT to incorporate familial phenotypic
correlations by using the variance-components
model of Fulker et al. [1999].
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The QTDT is particularly attractive because
it accommodates arbitrary pedigrees with or
without parental genotypes and allows simulta-
neous analysis of linkage and association. The
performance of the QTDT relies heavily on the
normality assumption of the quantitative traits.
Nonnormality can cause inflated type I error and
diminished power. The FBAT and PDT are valid
tests for arbitrarily distributed quantitative traits;
however, these tests may not be powerful for
nonnormal traits.

One approach to achieving (approximate) nor-
mality is to transform the trait values. However,
it is very challenging to identify an appropriate
transformation, especially when the data contain
outlying trait values. Different transformations
may yield conflicting results of analysis, and
incorrect transformations can adversely affect
the type I error and power.

In this article, we develop powerful tests of
association for arbitrarily distributed quantitative
traits. Specifically, we extend the QTDT, FBAT,
and PDT by allowing a completely unspecified
transformation function for the trait values, which
is estimated empirically from the observed data.
We also develop a procedure to properly adjust
for multiple comparisons when testing several
markers. We implement the new methods in a
computer program for public use. Extensive
simulation studies demonstrate that the new
methods can be substantially more powerful than
the existing ones while providing accurate control
of the type I error; see Tables I, III, IV, V, VI and
Figure 2. When applied to the Collaborative Study
on the Genetics of Alcoholism (COGA), the new
QTDT method detected significant association
of SNP tsc0022400 on chromosome 7 with
the quantitative electrophysiological phenotype
TTTHI1, whereas the existing methods did not; see
Figure 3.

METHODS

NOTATION

Suppose that the study collects n general
pedigrees or families, with 7; individuals in the
ith pedigree. Let Y;; be the trait value for the jth
individual of the ith pedigree, and x;; a vector
of observed covariates. Consider a candidate
diallelic marker, with frequencies p and g=1—p
for alleles A and B. Define the marker genotype
score for the jth individual of the ith pedigree as
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Zij=-1, 0, or 1 according to whether this
individual has genotype B/B, A/B, or A/A,
respectively. Clearly, the number of transmitted
A alleles is Z;+1.

MODELS

Assuming additive genetic effects, we propose
the following variance-components model:

H(Yy) = BZi + v'x; + gij + Gij + ¢ )

where H is an unknown increasing function, B is
the additive genetic effect, v is a set of fixed
covariate effects, g;; is a random effect due to the
major gene after accounting for the marker
association, G;; is a random effect due to other
genes at unlinked loci, and ¢;; is an individual-
specific residual environmental effect. In this
model, association and covariate effects are
represented by the mean parameters, while
linkage is represented by the covariance structure.
The random effects g;;, G;;, and e; are assumed
to be normally distributed with mean zero and
variances o2, GZG, and GZ. Because H is an arbitrary
function, we constraint the residual variance c? to
be 1 and absorb the intercept in H.

Suppose that g;;, G;;, and e; are uncorrelated.
Then the expected phenotypic variance for H(Y;)
is 02 = (62 + 02) + 0 + o7, where o2 =2pgB’ is
the phenotypic variance explained by the associa-
tion with the candidate marker, and 2 + G§ is the
overall additive genetic variance explained by
both linkage and association. The overall herit-
ability of the trait is (o2 + G§ +62)/c? and the
heritability attributable to the examined locus is
(o7 + o3)/0.

Let H; denote the transformed trait values
[H(Y#),...,H (Yin,)]T for the ith family. The pheno-
typic covariance matrix of H;, after accounting for
association, can be expressed as

Vi = 0.%g + 2052 + 0.1

where X,; contains the proportions of alleles at the
major locus that are identity-by-descent (IBD)
among the relative pairs in the ith family, Xg; is
the matrix of kinship coefficients which depends
only on the relatedness of the relative pairs,
and I; is an identity matrix. Several computer
programs, such as GENEHUNTER [Kruglyak
et al., 1996], SOLAR [Almasy and Blangero,
1998], and MERLIN [Abecasis et al., 2002], are
available for estimating the IBD allele sharing
probabilities.

To avoid detecting spurious association intro-
duced by population stratification, we follow
Fulker et al. [1999] and Abecasis et al. [2000a,b]
to decompose the marker genotype score Z;; into
orthogonal between- and within-family compo-
nents: b; denotes the expected genotype score
conditional on family data, and w;; denotes the
deviation from this expectation. Let M;; and F;
represent specific indexes for the male and female
parents of the jth individual in the ith family. In
nuclear families, b; is defined as (Zp;, + Zum,)/2
if parental genotypes are available and as the
average of the Z; among the siblings of the ith
family otherwise. In general pedigrees, we set
b;; = Zj; for genotyped founders; for nonfounders,
bij is (br; + bum;)/2 if both br,; and by, are defined
and is the average genotype score among the full
siblings of the jth individual in the ith pedigree
otherwise.

Given the above orthogonal decomposition of
the genotype scores, we modify model (1) as

H(Yyj) =Bybij + By wis + 7" x;
+ i + Gij +ej

where B, and B,, are the between- and within-
family effects. Positive values of fB,, imply that
excess transmission of A allele has a positive
effect on the trait values. By the arguments of
Abecasis et al. [2000a], B, accounts for all the
spurious association between genotype score and
phenotype, and B,, provides a direct measure of
the additive genetic value. We refer to (1) and (2)
as semiparametric variance-components models
because the function H is unspecified. The
existing variance-components models are para-
metric in that the transformation is assumed to be
known or incorporated into the definition of Y.

)

MAXIMUM LIKELIHOOD ESTIMATION

Define A(y) =e""¥. Let & denote the variance
parameters o> and o%, and let 0 denote the
complete set of parameters By, Pw, v, & and A.
The log likelihood for 0 takes the form

c— % Z log|det(V))|
i=1

l n
—5 > (H; — Byb; — Bywi — Xiy)"
i=1

x Vi1 (H; — Bybi — Bywi — Xi7)
& MYi)

+ Z Z log AYy)

i=1 j=1

@)
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where c is a constant, X; is the matrix of covariates
for the ith family, b;= (ba,... ,bim)T, W, =
(wi, . .. ,wm,.)T, and A is the derivative of A. This
is a nonparametric likelihood [Bickel et al., 1993]
in that the function H or A is completely arbitrary.

It seems natural to estimate © by maximizing
the nonparametric log likelihood given in (3). The
maximum does not exist if A is restricted to
be absolutely continuous. Thus, we regard A as
a right-continuous function and maximize the
function

1 n
log L(®) =¢ — 5 > log|det(Vy)|

i=1
1 n

~5 > (H; — Byb; — Bywi — Xi7)"
i=1

x V7 {(H; — Bybi — Bywi — Xiv)
L A{Yy)

(4)

where A{Y;} is the jump size of A(y) aty =Y, i.e.,
the value of A(y) at y = Yj; minus its value right
before Y;. The resulting estimator, denoted by
0 = (By, Bw»7,& A), is the nonparametric maxi-
mum likelihood estimator of 0 [Bickel et al., 1993].

We can show that A(-) is a step function with
jumps at Yj; only. Thus, we maximize (4) over fy,
Bw v, & and AlYyl G=1,....,n;, j=1,...,n)
through the quasi-Newton algorithm [Press
et al., 1992]. The unknown transformation H(y) is
then estimated by H(y) = log A(y).

The (nonparametric) maximum likelihood esti-
mator 0 has many desirable properties. First, the
estimators of the regression and variance para-
meters depend on the Yj; only through their ranks,
so the estimators are rank-based and thus insensi-
tive to outliers. Second, 0 is approximately
unbiased, normally distributed, and statistically
efficient, implying that the unknown transforma-
tion is correctly estimated from the data and the
likelihood-based test statistics are the most power-
ful among all valid test statistics. We can prove the
forgoing results by adopting the arguments in
Appendix B of Diao and Lin [2005b]; the actual
proofs are available from the authors.

TEST STATISTICS

We can perform various hypothesis tests under
model (2). Specifically, we can assess whether
there is association between the candidate marker
and quantitative trait by testing the null hypoth-
esis Hy: B,y =0 against the alternative Ha: By#0;
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we will refer to this test as the semiparametric
QTDT (SQTDT). We can also test for the presence
of population stratification, Hy: By = Bw. In addi-
tion, we can test Hy: 62 = 0 against Hy: G§ >0 for
genetic linkage. For each hypothesis test, we can
calculate the likelihood ratio statistic

LR = —2[log L(6) — log L(0)]

where 0 is the restricted maximum likelihood
estimator of @ under the null hypothesis. For
testing association, LR is approximately y3 dis-
tributed. For testing linkage, the distribution of LR
is approximated by a mixture of ;> distributions
[Self and Liang, 1987].

We can use model (2) to develop a semipara-
metric version of the general FBAT [Laird et al,,
2000; Lange et al., 2002]. Specifically, we obtain the
restricted maximum likelihood estimator @ under
model (2) with the constraint of B,,=0, and
calculate the residuals R; = H; — b, — X;y. We
then define

S= isi
i=1

where S; :wiTVl-_ 1Ri, and V; is the estimated
phenotypic covariance matrix for the ith family.
By treating the marker genotype scores Z; as
random and the trait values or covariate-adjusted
residuals as fixed, we propose the following
semiparametric FBAT:

52

SFBAT = var()

where

n
var() = 3 (V, 'R)T Cov(Z)V; R,
i=1
and Zi = (Zﬂ, ey Z,'n,.)T.

One can calculate the conditional mean and
covariance matrix of Z; under the null hypothesis
of no association, regardless of whether the
parental genotypes are available or not [Rabino-
witz and Laird, 2000]. Note that the between-
family component b;; is the conditional expecta-
tion of the marker genotype score Z;. As in the
case of the general FBAT, we can incorporate an
offset vector m; = (yy,...,u,) for R; into the
calculation of S;.

There are two key differences between the
general FBAT and the proposed SFBAT. First,
the transformation function H is assumed to be
known in the FBAT, but is completely unspecified
and nonparametrically estimated in the SFBAT.
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Second, we use the correlation-adjusted residuals
V, R; instead of the R; in the construction of the
SFBAT so as to incorporate familial correlation due
to the linkage of the major gene locus and the
polygenic effects at unlinked loci. Lange et al.
[2002] extended the general FBAT by using a
simple structure for V; to account for the environ-
mental correlation within families and showed
that disregarding the within-family correlation
results in loss of power.

Motivated by the fact that the covariance
between the marker residuals w;; and the pheno-
typic residuals R; is zero in the absence of
association, we propose the semiparametric PDT

SZ

SPDT = ?(S)

where

2

var(S) = Z S,
i=1

S, =S, +IT=7'U;, U; is the ith family’s score
function for n= (B, 7v,& A), X is the Fisher
information matrix of #, and

" Ow] Vi 'R;

FZZ on

The unknown_ parameter 6 in I', ¥ and U; is
evaluated at 6. The PDT [Monks and Kaplan,
2000] assumes that the transformation function H
is known and ignores the within-family correla-
tion. The denominator of the SPDT takes a more
complicated form than its counterpart in the PDT
because the S; are not independent.

Under the null hypothesis of no association,
both the SFBAT and SPDT are approximately y2
distributed. Both tests are valid, at least in large
samples, even when model (2) is incorrect. Note
that the two tests differ only in the variance
calculation: the SFBAT computes the variances of
the marker scores on the basis of Mendelian
transmissions, whereas the SPDT estimates the
variance of S empirically.

Because the QTDT of Abecasis et al. [2000a,b]
is a likelihood ratio statistic under a parametric
variance-components model, its performance de-
pends critically on the normality assumption. The
FBAT and PDT can be represented as the score
statistics under parametric variance-components
models and thus may not have good power
for nonnormal traits, although they are valid
(in large samples).

Technically speaking, the normality assumption
is imposed on the unobserved residuals or the
conditional distribution of the trait values (given
the genetic marker and covariates) rather than on
the marginal trait distribution. In fact, the margin-
al distribution will not be normal if there is any
marker or covariate effect. Thus, the common
practice of making the distribution of the trait
values normal-looking through transformation
can be counter-productive.

ADJUSTMENTS FOR MULTIPLE TESTING

In association studies, one often examines
a number of SNPs in a chromosomal region.
Failure to account for the effects of multiple
comparisons would result in an abundance of
false positive results. The commonly adopted
Bonferroni correction is overly conservative be-
cause the test statistics for SNPs in linkage
disequilibrium (LD) are correlated. We describe
below a Monte Carlo procedure to properly adjust
for multiple testing.

Suppose that one is interested in testing associa-
tion with m SNPs. At the kth SNP site, k=1,...,m,
the test statistic can be written as or be approxi-
mated by Ty = U?/Vy, where

n
Uy = Z Uy
i=1

Ui involves only the data from the ith family, and
V=) U
i=1

For the SFBAT and SPDT, U, takes the form of
S;. For the SQTDT, Uy; pertains to the ith family’s
efficient score function [Bickel et al., 1993;
Diao and Lin, 2005b] for f,, which has a

similar expression to that of S;. If none of the
m SNPs is associated with the trait, then the
joint distribution of (Uj, ..., U,,) is approximately
multivariate normal with mean zero and with
covariance

n
V=) Uglly

i=1

between U, and U,. Define
n
U =) UG
i=1

and Tj = ljli /Vk, where Gy, ..., G, are independent
standard normal random variables. The joint

Genet. Epidemiol. DOI 10.1002/ gepi
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distribution of (Ty,...,T,,) is approximately the
same as the conditional distribution of (T4, ..., Ty)
given the data. One can obtain realizations from
the latter by generating a large number of normal
random samples (Gy, ..., G,). Given these realiza-
tions, one can obtain the P-values for the
test statistics adjusted for multiple comparisons
[Lin, 2005].

RESULTS

SIMULATION STUDIES

We carried out a number of simulation studies
to investigate the properties of the new methods
and to compare them with those of the existing
methods. We assumed a diallelic QTL, Q, with
additive effects and simulated a tightly linked
diallelic marker locus, M, with recombination
fraction of 0. The frequencies of the minor alleles
Qi and M; of Q and M are 0.25, ie,
po, = pm, = 0.25. We introduced LD between the
QTL and marker locus in the parental chromo-
somes. LD is measured by D = pum,0, — PMm, POy
where pum,o, is the frequency of haplotype
MiQ;. The maximum of D is Dy =
min(pm,,po,) — Pm,Po,, and the standardized LD
coefficient is D' = D/D,.. We considered differ-
ent levels of ', the case of D’ = 0 pertaining to the
null hypothesis of no association. For each
scenario, we simulated 10,000 data sets, each with
100 nuclear families. Each family consisted of 2, 3,
4, or 5 siblings with probabilities 0.3, 0.3, 0.2, and
0.2, respectively. The parental genotypes were
assumed to be known.

In the first set of studies, we generated trait
values from the model

H(Yjj) = BZij + v1X1ij + v2X2ii + Gij + e (5)

where H(y) =log(2y—2), p=0.73, y1=-1, v»=1,
Z;; is the QTL genotype score, Xy;; is a binary
variable with 0.5 probability of being 1, X;; is an
independent standard normal variable, and G;j
and ¢;; are independent zero-mean normal vari-
ables with variances ¢ = 0.6 and o2 = 1.2. The
overall heritability is 0.4, and the major-gene
heritability is 0.1.

We evaluated the proposed semiparametric
methods (i.e., SQTDT, SFBAT, and SPDT), as well
as the existing parametric methods (i.e., QTDT,
FBAT, and PDT) with various transformations,
including the true transformation, log transforma-
tion, square-root transformation, and no transfor-
mation. We also included the permutation test
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of Abecasis et al. [2000a]. The parametric method
with the true transformation is an ideal situation
in which the normality assumption holds after a
known transformation.

The results of these studies are presented in
Table I. The new methods provide accurate control
of the type I error in all cases and have virtually
the same power as their parametric counterparts
with the true transformation. As expected, the
SQTDT tends to be more powerful than the SFBAT
and SPDT. Although the QTDT with an incorrect
transformation has reasonable type I error, the
power is drastically reduced. Without transforma-
tion, the power is extremely low. In the case of
complete LD (i.e., D’ = 1), the power of the SQTDT
is 95.0% at the 1% nominal significance level, as
compared to 14.7% for the QTDT without trans-
formation. The permutation test does not improve
the power. With incorrect transformations, the
FBAT and PDT tend to be conservative and have
low power.

The additive effect of the marker on the
phenotype is o = BD/pum,pm, [Cardon and Abeca-
sis, 2000]. The results for the estimation of
this parameter are summarized in Table II.
The parameter estimator is virtually unbiased.
The standard error estimator reflects accurately
the true variation, and the confidence intervals
have proper coverage probabilities. As expected,
the effect size of the marker decreases as the LD
between the QTL and marker alleles becomes
weaker.

The residual genetic variance, i.e., the difference
between the additive genetic variance of the QTL
and the variance of the QTL explained by
association with the marker allele is given by 0; =
2p0,P0, B> — 2pmpmy®®> [Cardon and Abecasis,
2000]. In the above studies, the type I error/power
of the proposed method to detect residual linkage
are approximately 0.19, 0.18, 0.14, 0.09, and 0.05
at the nominal significance level of 0.05 when
D’ equals 0, 0.25, 0.5, 0.75, and 1, respectively.

In the second set of studies, we considered the
same model as the first one except that the genetic
and environmental factors are correlated. Specifi-
cally, we generated X»;; from a normal distribution
with mean |Z;;| and variance 1. The results are
shown in Table III. The new methods continue to
perform as well as their parametric counterparts
with the true transformation and greatly outper-
form the parametric methods with incorrect
transformations. The type I error of the QTDT
with incorrect transformations is inflated. The
permutation test does not correct the type I error
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TABLE I. Type I error and power (%) of the association tests at the nominal significance level of 1% for nonnormal traits
when the genetic and environmental factors are uncorrelated

Method Transformation D’ =0.00 0.25 0.50 0.75 1.00
SQTDT Unspecified 0.93 5.80 29.13 69.87 95.03
QTDT True 1.03 6.16 30.41 71.14 95.41
None 1.01 1.46 3.40 7.40 14.69
Square root 0.92 2.24 7.87 20.32 41.90
Log 0.95 3.67 15.27 41.80 74.38
Permutation 0.98 1.50 3.83 8.47 16.09
SPDT Unspecified 0.89 4.93 24.69 63.60 93.19
PDT True 0.86 4.96 24.98 64.13 93.41
None 0.37 0.62 2.36 6.97 17.17
Square root 0.56 1.67 7.24 21.01 46.34
Log 0.78 3.16 13.72 39.51 73.83
SFBAT Unspecified 0.63 4.31 23.85 63.84 93.27
FBAT True 0.63 4.24 24.27 64.20 93.53
None 0.34 0.64 2.54 7.42 17.81
Square root 0.50 1.64 722 21.71 47.36
Log 0.53 2.79 13.71 40.03 74.82

Note: QTDT, PDT, and FBAT are the parametric tests due to Abecasis et al. [2000a], Monks and Kaplan [2000], and Laird et al. [2000]. SQTDT,
SPDT, and SFBAT are the proposed semiparametric QTDT, PDT, and FBAT tests.

TABLE II. Summary statistics for the estimation of the
marker effects

True

D’ value Mean SE SEE CP(%)
0.00 0.000 —0.003 0.160 0.162 95.5
0.25 0.167 0.159 0.161 0.162 95.4
0.50 0.333 0.322 0.160 0.162 95.2
0.75 0.500 0.485 0.161 0.162 94.9
1.00 0.667 0.649 0.158 0.162 95.2
Note: The original value of o is divided by c. = 4/1.2 so that o and

B, are compared on the same scale. Mean and SE are the sampling
mean and sampling standard error of the parameter estimator;
SEE is the mean of the standard error estimator, and CP is the
coverage probability of the 95% confidence interval.

or improve the power. Without transformation,
the FBAT and PTDT have inflated type I error;
with incorrect transformations, the power is
reduced.

In the third set of studies, we generated
population admixture by mixing in equal propor-
tions families drawn from two populations (A and
B) with different QTL and marker allele frequen-
cies: in population A, po, = pm, = 0.25; in popula-
tion B, pg, = pm, = 0.75. When there is no LD in
either population, LD exists in the pooled popula-
tion with D'=0.25. We considered the same
model as above except that the value of D’ is
population-specific rather than for the pooled

population. The results, as shown in Table IV, are
similar to those without population admixture.
The new methods are robust to the spurious
association introduced by population admixture
and provide accurate control of the type I error.

For positive quantitative traits, one may employ
the Box-Cox transformation. However, the Box-
Cox transformation may compromise the type I
error and power unless it provides a good
approximation to the true transformation. In the
above three sets of studies, the Box-Cox transfor-
mation turned out to be the log-transformation
and thus failed to alleviate the adverse effects of
nonnormality.

To investigate the robustness against outlying
trait values, we considered model (5) with identity
H but generated the residual error for 2% of the
families from the exponential distribution with
mean of 4. Figure 1 shows the distribution of trait
values for the first simulated data set. The results
are summarized in Table V. While still providing
accurate control of the type I error, the new
methods are much more powerful than the
existing methods, especially under strong LD.

Instead of the familiar parametric transforma-
tions, one may use the rank or normal score
transformation. For example, Wang and Huang
[2002] described a multivariate normal copula
model by using normal score transformation.

Genet. Epidemiol. DOI 10.1002/ gepi
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TABLE III. Type I error and power (%) of the association tests at the nominal significance level of 1% for nonnormal
traits when the genetic and environmental factors are correlated

Method Transformation D’ =0.00 0.25 0.50 0.75 1.00
SQTDT Unspecified 0.94 5.83 28.08 68.05 94.03
QTDT True 1.07 5.85 29.00 69.00 94.57
None 1.95 1.34 1.74 3.48 6.51
Square root 1.30 1.78 5.65 15.67 3240
Log 1.26 3.72 16.57 45.33 78.14
Pernutation 1.53 1.14 1.66 3.59 6.97
SPDT Unspecified 0.74 4.52 22.38 59.43 91.02
PDT True 0.69 4.35 22.56 59.97 91.03
None 1.60 0.82 0.65 1.51 3.73
Square root 0.73 0.68 3.40 11.64 29.40
Log 0.69 2.50 11.92 37.70 73.16
SFBAT Unspecified 0.59 3.72 21.15 59.63 91.26
FBAT True 0.55 3.70 21.55 59.95 91.45
None 2.11 1.23 1.25 2.86 6.24
Square root 1.14 1.25 5.08 15.96 37.25
Log 0.83 2.99 14.71 43.17 77.77

See the Note to Table 1.

TABLE IV. Type I error and power (%) of the association tests at the nominal significance level of 1% for nonnormal
traits in the presence of population admixture when the genetic and environmental factors are correlated

Method Transformation D’ =0.00 0.25 0.50 0.75 1.00
SQTDT Unspecified 1.15 6.22 29.14 69.68 94.97
QTDT True 1.29 6.57 30.27 70.43 95.31
None 1.61 3.66 8.18 16.61 27.94
Square root 1.71 6.39 18.50 40.88 66.01
Log 1.75 8.65 30.81 65.79 90.93
Pernutation 1.19 3.03 6.45 12.97 22.11
SPDT Unspecified 0.97 5.18 24.60 63.69 92.76
PDT True 0.96 5.26 24.76 63.81 93.06
None 0.54 1.86 4.92 12.27 24.68
Square root 0.95 421 14.32 35.88 62.72
Log 1.25 6.52 25.05 58.05 87.25
SFBAT Unspecified 0.81 4.65 23.96 62.95 92.95
FBAT True 0.83 4.70 24.14 63.33 93.04
None 0.99 3.09 7.44 17.33 31.89
Square root 1.37 5.86 18.78 42.82 70.72
Log 1.54 7.60 28.39 63.22 90.05

See the Note to Table 1.

However, such transformations tend to destroy model as (5) but with identity H and log-normal
the relationship between the trait and the marker Xzj. In this case, no transformation is needed,
(or covariates) and thus reduce the power. To although the marginal distribution of the trait
demonstrate this point, we considered the same values is not normal. As shown in Table VI, the
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Fig. 1. Histogram of trait values for a simulated data set with outliers.

TABLE V. Type I error and power (%) of the association tests at the nominal significance level of 1% in the presence

of outliers

Method D' =0.00 0.25 0.50 0.75 1.00
SQTDT 1.04 5.70 26.36 64.19 92.20
QTDT 1.02 5.03 22.08 55.07 85.05
SPDT 091 459 22.76 58.18 89.11
PDT 0.66 3.09 14.68 39.33 66.31
SFBAT 0.77 4.04 21.51 57.36 88.98
FBAT 0.70 352 18.06 48.86 79.71

See the Note to Table I.

rank and normal score transformations result in
appreciable loss of power, as compared to the
new methods and the existing methods without
transformation.

Our final set of simulation studies was designed
to assess the performance of the proposed Monte
Carlo procedure for multiple testing. We gener-
ated 11 tightly linked, evenly distributed SNPs in
a chromosome region, with successive recombina-
tion fractions of 0.02. The minor allele frequency
for each SNP was set to 0.3. We assumed that the
QTL is located in the middle, which was either in
linkage equilibrium (i.e., D’ = 0) or in complete LD
with the sixth SNP. We generated the trait values
from model (5) with (c2,06%,02) =(0.1,0.7,1.2).
We considered different degrees of LD between
successive SNPs. The results for the SQTDT are
shown in Figure 2. Under the null hypothesis of
no association, the type I error based on the Monte

Carlo procedure is always close to the nominal
level whereas the Bonferroni correction is overly
conservative. Under the alternative hypothesis,
the Monte Carlo procedure is more powerful than
the Bonferroni correction, especially under strong
LD. For the pairwise LD coefficient D" of 0.8, the
power associated with the Bonferroni correction
is 62.6% at the nominal significance level of 5%
whereas that of the Monte Carlo procedure is
69.0%. Similar results were obtained for the
SFBAT, SPDT, and the parametric methods (data
not shown).

COGA STUDY

COGA is a multi-center study designed
to identify and characterize genes that affect
susceptibility to alcohol dependence and related

Genet. Epidemiol. DOI 10.1002/ gepi
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TABLE VI. Type I error and power (%) of the association tests with rank and normal score transformation at the nomial

significance level of 1% for normal traits

Method Transformation D' =0.00 0.25 0.50 0.75 1.00
SQTDT Unspecified 0.94 5.75 28.83 69.34 94.89
QTDT None 1.00 6.07 30.52 70.97 95.43
Rank 1.11 5.04 20.94 54.30 85.06
Normal score 1.07 5.60 25.00 61.97 90.28
SPDT Unspecified 0.88 4.88 24.42 63.08 92.99
PDT None 0.91 4.83 24.95 63.92 93.46
Rank 0.96 3.89 17.26 48.23 80.70
Normal score 0.81 4.37 19.76 54.32 86.05
SFBAT Unspecified 0.68 413 23.36 63.10 93.09
FBAT None 0.65 4.28 24.25 64.11 93.51
Rank 0.73 3.72 16.77 47.78 81.56
Normal score 0.72 3.92 19.38 54.27 86.46
See the Note to Table I.
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Fig. 2. Type I error and power of the semiparametric QTDT at the overall nominal significance level of 0.05 based on the
Bonferroni correction and the proposed Monte Carlo method. The horizontal axis pertains to the linkage disequilibrium between
two successive loci. The lower and upper solid curves pertain to the type I error and power of the Monte Carlo method; the lower and
upper dashed curves pertain to the type I error and power of the Bonferroni correction.

phenotypes [Begleiter et al., 1995]. The study
contains 143 multi-generation pedigrees with a
total of 1,614 individuals and with family sizes
ranging from 5 to 32. A total of 1,353 individuals
were selected for genotyping of SNPs conducted
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by Affymetrix and Illumina. We considered
the quantitative electrophysiological phenotype
TTTHI1 (electric potential FP1, far frontal left side
channel). Strong linkage signals of TTTH1 on
chromosome 7 were previously discovered by
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Porjesz et al. [2002]. Of the 1,353 genotyped
individuals, 901 had the TTTH1 measurements.
The mean TTTHI1 value was 2.41, with SD of 0.68
and median of 2.32. The distribution of the TTTH1
values was slightly right skewed with skewness
of 0.62 and kurtosis of 0.28.

We performed a chromosome-wide association
analysis (on chromosome 7) using the genotype
data provided by Affymetrix for 577 SNPs. Of the
total 578 Affymetrix SNPs on chromosome 7, SNP
tsc0047552 contained the same genotype for all
individuals and was thus ignored in the analysis.
We included age, age?, gender, and maximum
number of drinks consumed in a 24-hr period
as covariates in model (2). We estimated the
IBD allele-sharing probabilities at each SNP site
by the computer package SOLAR [Almasy and
Blangero, 1998].

Figure 3 displays the LOD scores of four
association tests: SQTDT, QTDT, SPDT, and PDT.
(The SFBAT and FBAT require nuclear families
and thus were excluded.) The LOD scores were
obtained by dividing the original statistics by

21og 10. The LOD scores reached their peaks at the
same location of 130.405cM for SNP tsc0022400,
with peak values of 3.27 and 2.73 for SQTDT and
SPDT, as opposed to 3.07 and 2.35 for QTDT and
PDT. The corresponding P-values without adjust-
ment of multiple testing were 1.04x107%
3.99x107%, 1.73x107%, and 1.0 x 107°. With the
Bonferroni correction, no SNPs were found to
be significantly associated with the trait at the
chromosome-wide significance level of 0.05, the
Bonferroni-adjusted P-values of the SQTDT,
QTDT, SPDT, and PDT being 0.06, 0.10, 0.23, and
0.58, respectively, for SNP tsc0022400. Using
the proposed Monte Carlo procedure to account
for multiple testing, we obtained the adjusted
p-values of 0.05, 0.08, 0.17, and 0.33 for the
SQTDT, QTDT, SPDT, and PDT, respectively, at
SNP tsc0022400. Thus, the SQTDT with the Monte
Carlo adjustment of multiple testing is the only
test that is significant at the chromosome-wide
significance level of 0.05. The proposed estimate
of the effect size for SNP tsc0022400 is —0.525
with estimated standard error of 0.135.

< -
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o QTDT
A SPDT
+ PDT
o -
o
[e]
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3 s
o

Chromosome 7 (cM)

Fig. 3. LOD scores from the new and existing association tests for quantitative trait TTTH1 on chromosome 7 in the COGA study:
QTDT and PDT are the parametric tests due to Abecasis et al. [2000a] and Monks and Kaplan [2000]; SQTDT and SPDT are the proposed

semiparametric QTDT and PDT tests.
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DISCUSSION

Family-based tests of association for quantita-
tive traits are playing an increasingly important
role in identifying genetic determinants of com-
plex diseases. The performance of the existing
methods depends critically on the normality
assumption. Most quantitative traits are not
normally distributed. The semiparametric meth-
ods described in this article are considerably
more powerful than the existing methods under
nonnormality and have the same power as
the existing methods under normality.

The biological rationale for variance-compo-
nents models was provided by Amos [1994],
Fulker et al. [1999] and Abecasis et al. [2000a,b]
among others. Our main contribution is to allow
an unknown transformation of the trait values.
Misspecification of other aspects of the model
may also affect the performance of the current
methods. The validity of the SFBAT and SPDT
does not depend on correct model specification,
although their power does.

We have implemented the new methods in a
cost-free computer program, which is posted on
our website site: www.bios.unc.edu/~lin.
Although it is more time consuming to perform
a semiparametric test than a parametric test, the
computing time is not a concern with the current
computing power. It took less than 6s on an IBM
BladeCenter HS-20 machine to perform the
SQTDT and SPDT tests at one SNP locus for
the COGA data. For the simulation studies,
the analysis at one position took only 1s for the
three semiparametric tests. Our computer pro-
gram is efficient and reliable even for very large
samples. We conducted some simulation studies
with 500 sibships, and it took less than 15sec
to perform the semiparametric tests; the results
are similar to those reported in the Simulation
Studies section.

Recently, Diao and Lin [2005a] extended the
traditional variance-components model [Amos,
1994] by allowing an arbitrary transformation
and developed a powerful and robust method
for linkage analysis. Model (2) is more general
than the model of Diao and Lin [2005a] in
that it formulates both linkage and association.
If the association effects are disregarded, then
model (2) reduces to model (1) of Diao and Lin
[2005a].

The SQTDT is versatile in that it can handle
extended pedigrees with missing genotype
data and perform joint linkage and association
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analysis. Model (2) allows one to test for popula-
tion stratification, as described in the Methods
section. If no population stratification is detected,
one can use the more powerful test based on
model (1). For the SFBAT and SPDT, one can
flexibly choose the offset vector and the structure
of V;. Lange et al. [2002] showed that the FBAT
and PDT are valid tests and are more powerful
than the QTDT when only offsprings with trait
values in the upper 10% tail of the trait distribu-
tion are selected. Similar conclusions hold for the
SFBAT, SPDT, and SQTDT (data not shown).

For simplicity of description, we assumed that
the markers are diallelic and the genetic effects are
additive. It is straightforward to incorporate
multiallelic markers and dominant effects. In
addition, we can extend model (2) to include
gene-gene interactions and gene-environment
interactions. It is also possible to extend the
single-trait model (2) to longitudinal data and
multiple traits.

In some studies, the trait values may be
censored. When the trait pertains to the age at
onset of a disease, censoring is inevitable because
of loss to follow-up and limited study duration.
Censoring also arises if the assay cannot detect
values smaller (or larger) than some threshold.
Lange et al. [2004] considered the FBAT approach
for the age-at-onset data based on the log-rank
and Wilcoxon statistics. We are currently extend-
ing the SQTDT, SFBAT, and SPDT to censored
traits.
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