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Semiparametric Variance-Component Models for Linkage
and Association Analyses of Censored Trait Data
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Variance-component (VC) models are widely used for linkage and association mapping of quantitative trait loci in general
human pedigrees. Traditional VC methods assume that the trait values within a family follow a multivariate normal
distribution and are fully observed. These assumptions are violated if the trait data contain censored observations. When
the trait pertains to age at onset of disease, censoring is inevitable because of loss to follow-up and limited study duration.
Censoring also arises when the trait assay cannot detect values below (or above) certain thresholds. The latent trait values
tend to have a complex distribution. Applying traditional VC methods to censored trait data would inflate type I error and
reduce power. We present valid and powerful methods for the linkage and association analyses of censored trait data. Our
methods are based on a novel class of semiparametric VC models, which allows an arbitrary distribution for the latent trait
values. We construct appropriate likelihood for the observed data, which may contain left or right censored observations.
The maximum likelihood estimators are approximately unbiased, normally distributed, and statistically efficient. We
develop stable and efficient numerical algorithms to implement the corresponding inference procedures. Extensive
simulation studies demonstrate that the proposed methods outperform the existing ones in practical situations. We provide
an application to the age at onset of alcohol dependence data from the Collaborative Study on the Genetics of Alcoholism.
A computer program is freely available. Genet. Epidemiol. 30:570–581, 2006. r 2006 Wiley-Liss, Inc.
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INTRODUCTION

The study of complex diseases is the most
important challenge in genetic epidemiology.
Because complex diseases are characterized by
various quantitative traits, QTL mapping plays a
critical role in this endeavor. The most popular
approach to QTL mapping pertains to variance-
component (VC) models [Amos, 1994; Amos et al.,
1996; Almasy and Blangero, 1998; Fulker et al.,
1999; Abecasis et al., 2000]. This approach is
attractive because it accommodates any type of
pedigree, allows both linkage and association
analyses, and tends to be more powerful than
competing methods.

In many studies, the trait data contain censored
observations. Trait censoring can arise in several
ways. For example, the trait assay may fail to
detect values below (or above) certain thresholds.

This is the case with the coronary artery calcifica-
tion (CAC) data in the Family Heart Study
[Higgins et al., 1996]: the distribution of CAC
exhibits a spike at the left end because a large
proportion of CAC measures do not exceed
threshold for detection and are thus recorded as
0; the non-zero CAC measures are skewed to the
right. A similar study was described by Epstein
et al. [2003]. Trait censoring may also arise from
subject-specific thresholds due to factors such as
medication [Valle et al., 1998; Epstein et al., 2003].

Another type of censoring occurs when the
quantitative trait pertains to event time, such as
age at onset of disease or survival time. Event
times are subject to censoring because not all
individuals will experience the event of interest
(disease onset or death) during the study follow-
up. Most complex human diseases, including
breast cancer, prostate cancer, and bipolar, exhibit
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variable ages at onset [Claus et al., 1990; Carter
et al., 1992; Stine et al., 1995]. Our work was partly
motivated by the Collaborative Study on
the Genetics of Alcoholism (COGA) [Begleiter
et al., 1995], in which about 54% of individuals
were unaffected with alcoholism at the time of
interview.

The VC methods have been extended to deal
with trait censoring. Epstein et al. [2003] proposed
a tobit VC model for left-censored traits, which
assumes that the latent trait values within a family
follow a multivariate normal distribution, possi-
bly after a known transformation. It is difficult
to identify the true transformation, and incorrect
transformations can inflate type I error and reduce
power. Pankratz et al. [2005] incorporated normal
random effects into the Cox [1972] proportional
hazards model for right-censored data and esti-
mated the unknown parameters by maximizing
the so-called penalized partial likelihood (PPL).
This method is not statistically efficient because
it disregards some useful information in the
observed-data likelihood [Ripatti and Palmgren,
2000], and the Laplace approximation used in
computing the PPL function may not be accurate
enough to produce unbiased parameter estimates.
Both Epstein et al. [2003] and Pankratz et al. [2005]
focused on linkage analysis. Li [1999; 2002], Li and
Zhong [2002] and Zhong and Li [2004] considered
proportional hazards models with gamma frail-
ties. These models induce a restricted form of
dependence and are limited to sibships. It should
be noted that the proportional hazards assump-
tion often fails, even when the trait pertains to
event time.

There exist family-based association tests
(FBATs) for age-at-onset data, which explore the
correlation between the marker genotype and the
phenotype. Horvath et al. [2001] derived the
FBAT-Exp by assuming a parametric proportional
hazards model with exponentially distributed
event times. Lange et al. [2004] proposed the
FBAT-logrank and FBAT-Wilcoxon based on the
logrank and Wilcoxon statistics. The FBAT-log-
rank is closely related to the tests of Mokliatchouk
et al. [2000], Shih and Whittemore [2002], and Hsu
[2003], which were derived under proportional
hazards models. The FBATs do not incorporate
environmental risk factors or the familial correla-
tion of the trait values and are limited to nuclear
families. Thus, the FBATs tend to be less flexible
and less powerful than the VC methods.

In this article, we provide robust and powerful
VC methods for mapping QTLs with censored

trait data in general pedigrees. These methods are
derived from a broad class of semiparametric
transformation models with random effects. The
transformation models include both proportional
and non-proportional hazards models; the ran-
dom effects may consist of major gene effects,
polygenic effects, and common environmental
effects. We develop efficient likelihood-based
estimation and testing procedures under the
proposed models.

Our approach is completely general in that it
allows linkage and association analyses for any
kind of censored traits in extended pedigrees.
Indeed, our work unifies and extends substan-
tially the existing methods. In particular, we
extend the work of Epstein et al. [2003] to allow
an unknown transformation, time-varying envir-
onmental factors, and non-normal error distribu-
tions, and extend the work of Pankratz et al.
[2005], Li [1999; 2002], Li and Zhong [2002], and
Zhong and Li [2004] to allow non-proportional
hazards models and a rich family of random-
effect distributions. We also generalize the FBATs
to handle extended pedigrees.

We have implemented the new methods in an
efficient and reliable computer program, which
is freely available for public use. Extensive
simulation studies demonstrate that the proposed
methods are considerably more powerful than the
existing ones while providing accurate control of
the type I error. An application to the aforemen-
tioned COGA data is provided.

METHODS

Suppose that the data contain n families or
general pedigrees, with ni individuals in the ith
pedigree. We first consider right-censored trait
data. Let Tij denote the latent quantitative trait
(e.g., age at onset) for the jth individual of the ith
pedigree, and let Cij be the corresponding censor-
ing time. The observation on the trait value
consists of two components: Yij 5 min (Tij, Cij)
and Dij 5 I (TijrCij), where I ( � ) is the indicator
function. Let Xij be a vector of observed covariates
or environmental factors. Consider a (possibly
multiallelic) candidate gene coded by Zij for the
jth individual of the ith pedigree, which may be a
vector incorporating both additive and dominant
effects. In the simplest case of a diallic marker
(with alleles A and B) with additive genetic
effects, Zij is a scalar and can be coded as
Zij 5�1,0, or 1 according to whether this indivi-

571QTL Mapping With Censored Data

Genet. Epidemiol. DOI 10.1002/gepi



dual has genotype B/B, A/B, or A/A, respec-
tively, so that the number of A alleles is Zij11.

We consider the following class of semipara-
metric linear transformation models with random
effects

HðTijÞ ¼ bTZij þ cTXij þ Rij þ eij ð1Þ

where H is an unknown increasing function, b is a
set of additive and/or dominant genetic effects, c
is a set of fixed covariates effects, Rij is a random
effect due to the major gene (after accounting
for the marker association) and other genes at
unlinked loci, and eij is an individual-specific
residual error. In this formulation, association is
parameterized by the mean structure whereas
linkage is represented by the covariance structure
[Fulker et al., 1999; Abecasis et al., 2000; Cardon
and Abecasis, 2000]. The choices of the extreme-
value and standard logistic distributions for eij

correspond to the proportional hazards model
[Cox, 1972] and the proportional odds model
[Bennett, 1983], respectively. In view of the linear-
model form of (1), a more natural choice for eij is
the normal distribution.

Write Ri ¼ ðRi1; . . . ;Rini
Þ
T. The random effects Ri

represent the within-pedigree correlation of the
quantitative traits. The most popular choice for
the distribution of Ri is the multivariate normal
distribution with mean zero and variance-covar-
iance matrix �i ¼ s2

m�mi þ 2s2
p�pi, where Smi con-

tains the proportions of alleles at the major locus
that are IBD among the relative pairs in the ith
family, Spi is the matrix of kinship coefficients
which depend only on the relatedness of the
relative pairs, and s2

m and s2
p are the pheno-

typic variances explained by linkage with the
candidate marker and other genes at unlinked
loci, respectively.

To avoid detecting spurious association induced
by population admixture, we decompose the
marker genotype score Zij into orthogonal
between- and within-family components [Fulker
et al., 1999; Abecasis et al., 2000]: bij is the
expected genotype score conditional on family
data, and wij is the deviation from this expecta-
tion. Let Mij and Fij index the male and female
parents of the jth individual in the ith family.
In nuclear families, bij is defined as ðZFij

þ ZMij
Þ=2

if parental genotypes are available and as the
average of the Zij among siblings of the ith family
otherwise. In general pedigrees, bij 5 Zij for
genotyped founders; for non-founders, bij is
ðZFij
þ ZMij

Þ=2 if both bFij
and bMij

are defined
and is the average genotype score among the full

siblings of the jth individual in the ith pedigree
otherwise.

With the above orthogonal decomposition of the
genotype scores, we modify model (1) as

HðTijÞ ¼ bT
b bij þ bT

wwij þ cTXij þ Rij þ eij ð2Þ

where bb and bw pertain to the between-family and
within-family effects. This model is a general-
ization of standard VC models in that it reduces to
the model of Abecasis et al. [2000] if the error
distribution is normal and the transformation
function is known. It is difficult to determine the
correct transformation, especially for event times.
By leaving the transformation function unspeci-
fied, model (2) allows arbitrarily distributed traits
while retaining all the attractive features of VC
models. For event time data, it is desirable to
extend model (2) to accommodate environmental
factors or covariates that vary over time. This
extension is provided in equation (A.1) of the
Appendix.

Let n denote the variance parameters s2
m and s2

p,
and let h denote the complete set of parameters
bb,bw,c,n, and H. The likelihood function for h is
given in expression (A.2) of the Appendix. The
maximum likelihood estimator is denoted by bh.
Because the likelihood is a complex function
involving the non-parametric function H( � ), the
calculation of bh is not a trivial matter. We describe
some efficient numerical methods in the Appen-
dix. The maximum likelihood estimator bh is
approximately unbiased, normally distributed,
and statistically efficient. These results imply that
the unknown transformation H( � ) can be correctly
estimated from the data and the likelihood-based
test statistics are the most powerful among all
valid test statistics.

Although the proportional hazards model (i.e.,
the extreme-value error distribution) is commonly
used in the analysis of uncorrelated event time
data, the normal error distribution is a more
natural choice for model (2) with normal random
effects, especially when the quantitative trait does
not pertain to event time. It is also computation-
ally simpler to use the normal error distribution.
Thus, all the numerical results in the sequel
pertain to the normal error model. Model (2) with
normal random effects and normal error is
reminiscent of standard VC models [Amos, 1994;
Abecasis et al., 2000], but is considerably less
restrictive because the transformation function
H is unspecified.

For left-censored trait data, we simply regard
�Tij and �Cij as the quantitative trait value and
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censoring value, respectively. Then all the above
results hold. Epstein et al. [2003] presented a tobit
VC model to account for left censoring. Their
model takes a similar form to our model (1);
however, it assumes that the transformation
function H is known and does not model marker
association. As indicated earlier, it is desirable to
leave the transformation function unspecified,
especially for event times.

We can perform various hypothesis testing
under model (2). For the linkage analysis, we
omit the association components in (2) and test the
null hypothesis H0 : s2

m ¼ 0 against the alternative
HA : s2

m40. We can assess whether there is
association between the candidate marker and
quantitative trait by testing the null hypothesis
H0 : bw ¼ 0. We can also test for the presence of
population admixture, H0 : bb ¼ bw. If no popula-
tion admixture is detected, we can use the more
powerful test based on model (1). For each
hypothesis test, we calculate the likelihood ratio
statistic

LR ¼ �2½log LðehÞ � log LðbhÞ�
where eh is the restricted maximum likelihood
estimator of h under the null hypothesis. For
testing association, LR is approximately w2 dis-
tributed with the degrees of freedom being the
dimension of bw. In the special case of additive
genetic effects, the null distribution of LR is
approximately w2

1 at a diallelic marker locus. For
testing the variance parameters, the distribution of
LR is approximated by a mixture of w2 distribu-
tions [Self and Liang, 1987].

RESULTS

SIMULATION STUDIES

We conducted extensive simulation studies to
assess the performance of the new methods and to
compare them with the best existing methods. We
assumed an additive QTL, Q, with two alleles Q1

and Q2 and simulated a diallelic marker M with
alleles M1 and M2. We created population admix-
ture by mixing in equal proportions families from
two populations (A and B) with different QTL
and marker allele frequencies: in population A,
pQ1
¼ pM1

¼ 0:25; in population B, pQ1
¼ pM1

¼

0:75. For each simulation set-up, we generated
10,000 data sets, each with 100 nuclear families.
The number of siblings in a family was set to
2, 3, 4, and 5 with probabilities 0.3, 0.3, 0.2,

and 0.2, respectively. The parental genotypes were
assumed to be known.

We first considered linkage analysis with left-
censored data. We generated trait values from the
model

HðTijÞ ¼ bZij þ g0 þ g1X1ij þ g2X2ij þ gij þ eij ð3Þ

where HðtÞ ¼ ð25 log tÞ2=3signðlog tÞ, g0 5�1.5, g1 5

�1.0, g2 5 1.0, Zij is the QTL genotype score, X1ij is
a binary variable with 0.5 probability of being 1,
X2ij is an exponential variable with mean value of
2 shifted to the right by |Zij|�0.5, and gij and eij

are independent zero-mean normal variables with
variances s2

p and s2
e . (The function sign(x) takes

value 1 if x is non-negative and �1 otherwise.) We
chose the variance parameters to yield different
levels of overall genetic heritability h2 ¼ ðs2

m þ

s2
pÞ=ðs

2
m þ s2

p þ s2
e Þ and major gene heritability

h2
m ¼ s2

m=ðs
2
m þ s2

p þ s2
e Þ. In particular, we consid-

ered the following six scenarios:

Model s2
m s2

p s2
e h2

m h2

a 0.0 1.6 0.4 0.0 0.8
b 0.4 1.2 0.4 0.2 0.8
c 0.8 0.8 0.4 0.4 0.8
d 0.0 1.2 0.8 0.0 0.6
e 0.4 0.8 0.8 0.2 0.6
f 0.8 0.4 0.8 0.4 0.6

Scenarios a and d pertain to the null hypothesis,
and the others to alternative hypotheses unless the
recombination fraction between the QTL and the
marker locus is 0.5. We set b5 1.633sm. Figure 1
shows the distribution of the trait values for the
first simulated data set under scenario a. This type
of distribution is commonly seen in real studies.
After simulating the trait values, we censored
those values below the 25th percentile of the trait
distribution.

We evaluated the proposed semiparametric
linkage test for H0 : s2

m ¼ 0 as well as the
parametric test of Epstein et al. [2003]. For the
latter, we performed various transformations,
including the true transformation, Box-Cox trans-
formation, and normal-score transformation. The
parametric test with the true transformation is an
idealized situation in which the normality as-
sumption holds after a known transformation.

The results of these studies are presented in
Table I and Figure 2. Table I shows the type I error
and power at the nominal significance level of 5%
at the true QTL, while Figure 2 displays the results
under scenario f with the recombination fraction
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between the marker locus and the QTL ranging
from 0 to 0.5. The new method provides accurate
control of the type I error in all cases and has
virtually the same power as the Epstein et al.
method with the true transformation. Without
transformation, the type I error of the Epstein et al.
method is very off. With the Box-Cox and normal-
score transformations, the type I error is still
inflated. Although it has smaller type I error than
the Epstein et al. method with incorrect transfor-
mations, the new method is more powerful.
Under scenario f, the power of the new linkage
test (at the true QTL) is 89.6% at the 5% nominal
significance level, as compared to 50.1%, 75.0%,
and 67.6% for the Epstein et al. tests without

transformation, with Box-Cox and normal-score
transformations, respectively.

Our second set of simulation studies was
concerned with the association analysis of left-
censored data. We considered the same model as
in the above linkage studies except that different
values for s2

m;s
2
p; and s2

e were used. We intro-
duced linkage disequilibrium (LD) within each
population between the QTL and marker locus in
the parental chromosomes. In each population, LD
is measured by D ¼ pM1Q1

� pM1
pQ1

, where pM1Q1
is

the frequency of haplotype M1Q1. The standar-
dized LD coefficient is D0 ¼ D=Dmax, where
Dmax ¼ minðpM1

; pQ1
Þ � pM1Q1

. When there is no
LD in either population, LD exists in the pooled
population with D0 ¼ 0:25. The marker locus is
tightly linked to the QTL with a recombination
fraction of 0, but we considered different levels
of D0. We set s2

m;s
2
p; and s2

e to 0.16, 0.64, and 1.2,
corresponding to the overall heritability h2 of 0.4
and the major gene heritability h2

m of 0.08. The
value of b became 0.653.

We assessed the performance of the proposed
semiparametric association test for H0 : bw ¼ 0 at
the nominal significance level of 5% and com-
pared it with the parametric test. The latter
is derived from model (2) with a specified
transformation function. The results of these
studies are presented in Table II. The semipara-
metric method performs nearly as well as its para-
metric counterpart with the true transformation.
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Fig. 1. The distribution of the latent trait values for a simulated data set: the histogram is shown in blue bars and estimated density

function in red line.

TABLE I. Type I error and power (%) of the linkage
tests at the nominal significance level of 5% for left-
censored traits

Epstein et al. method with transformation

Model
New

method True None Box-Cox
Normal

score

a 5.48 5.95 17.08 9.30 8.24
b 53.54 55.12 36.54 44.52 37.34
c 94.68 96.10 52.31 80.66 75.02
d 4.70 4.95 13.81 6.64 7.55
e 45.74 46.60 34.02 37.98 32.61
f 89.63 91.23 50.14 75.04 67.60

Note: Models a and d pertain to the null hypothesis and the others
to alternative hypotheses.
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With incorrect transformations, the type I error of
the parametric test is inflated and the power is
reduced.

The additive effect of the marker on the
phenotype is Z ¼ bD=pM1

pM2
[Cardon and Abe-

casis, 2000]. The results for the estimation of this
parameter are summarized in Table III. The
proposed estimator appears to be unbiased. The
standard error estimator reflects accurately
the true variation, and the confidence intervals
have proper coverage probabilities. As expected,
the effect size of the marker decreases as the LD
between the QTL and marker alleles becomes
weaker.

Our third set of studies was concerned with
right-censored age-at-onset data. We generated

the ages-at-onset and censoring times from the
following models:

logLðTijÞ ¼ bZij þ g1X1ij þ g2X2ij þ gij þ eij ð4Þ

and

logLðCijÞ ¼ eij ð5Þ

where LðtÞ ¼ ttþ1=btðtþ 1Þ with b 5 72 and t5 5,
g1 5�1.0, g2 5 1.0, Zij is the QTL genotype score,
X1ij is a binary variable with 0.5 probability of
being 1, X2ij is an independent standard normal
variable, and gij is a zero-mean normal polygenic
random effect with variance s2

p. We set s2
m and s2

p
to 0.2 and 0.80, so that b5 0.73. We considered the
extreme-value and normal distributions for eij. The
mean and variance of the normal error distribu-
tion were chosen so that the two error distribu-
tions have the same mean and variance. The
censoring rate was approximately 50%. We used
the proposed method to test the null hypothesis
H0 : bw ¼ 0 and compared it to the FBAT-logrank,
FBAT-Wilcoxon, and FBAT-Exp.

The results of these studies are presented in
Table IV. Although the FBATs have reasonable
type I error, the new method is more powerful
than the FBATs while providing accurate control
of the type I error even when the error distribution
is mis-specified. In the case of complete LD (i.e.,
D05 1) and extreme-value error distribution, the
power of the proposed test is 64.0% at the nominal
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Fig. 2. Type I error and power of the semiparametric linkage test versus the Epstein et al. [2003] test with various transformations

at the nominal significance level of 0.05 for left-censored traits.

TABLE II. Type I error and power (%) of the association
tests at the nominal significance level of 5% for left-
censored traits

Parametric method with transformation

D0
New

method True None Box-Cox
Normal

score

0.00 4.94 5.28 7.94 7.07 5.73
0.25 13.77 14.83 16.85 17.09 7.17
0.50 41.68 43.10 35.27 39.46 23.77
0.75 75.18 76.66 57.03 66.02 51.68
1.00 94.73 95.34 76.28 86.63 80.27
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significance level of 1%, as compared to 40.0%,
40.2%, and 51.3% for the FBAT-logrank, FBAT-
Wilcoxon, and FBAT-Exp, respectively.

Finally, we generated data from models (4) and
(5) but sampled only those sibships with one or
more affected individuals. Table V presents the
results with such ascertained families. Although
not developed to correct for ascertainment, the
proposed method seems to be robust to ascertain-
ment bias: it continues to provide accurate control
of the type I error and is more powerful than the

FBATs. As expected, sampling families with one
or more affected individuals is more efficient than
the population-based sampling. The power im-
provement will be more appreciable for rare
diseases.

COGA STUDY

Alcoholism is a disease that tends to run in
families and results in part from genetic risk
factors. COGA is a nine-site national collaboration
with the goal of identifying and characterizing
those genetic factors that affect the susceptibility
to alcohol dependence and related phenotypes
[Begleiter et al., 1995]. Initial ascertainment of
COGA probands was performed by screening
consecutive admissions at treatment facilities. To
be recruited into the COGA study, probands had
to meet both the diagnostic criteria for alcohol
dependence by the DSM-III-R standards [Amer-
ican Psychiatric Association, 1987] and the criteria
for definite alcoholism specified by Feighner et al.
[1972]. Thus, the COGA sample is representa-
tive of a severely alcohol-dependent population.
A subset of COGA families with at least
three alcohol-dependent first-degree relatives was

TABLE III. Summary statistics for the estimation of the
marker effects with left-censored traits

D0 True value Mean SE SEE CP(%)

0.00 0.000 0.003 0.172 0.169 94.7
0.25 0.149 0.148 0.170 0.167 94.6
0.50 0.298 0.291 0.169 0.165 94.3
0.75 0.447 0.433 0.168 0.162 94.3
1.00 0.596 0.578 0.167 0.159 93.8

Note: The original value of Z is divided by se5
ffiffiffiffiffiffi
1:2
p

, so that Z andbbw are compared on the same scale. Mean and SE are the sampling
mean and sampling standard error of the parameter estimator;
SEE is the mean of the standard error estimator, and CP is the
coverage probability of the 95% confidence interval.

TABLE IV. Type I error and power (%) of the association tests at the nominal significance level of 5% for right-censored
traits

D0

Extreme-value error Normal error

New FBAT-L FBAT-W FBAT-E New FBAT-L FBAT-W FBAT-E

0.00 4.79 4.64 4.69 4.79 4.62 4.91 4.59 4.75
0.25 10.66 9.03 9.06 9.90 11.82 8.45 8.99 9.63
0.50 30.02 21.62 21.69 25.53 33.29 21.44 22.56 25.21
0.75 58.56 42.51 42.76 51.15 63.36 42.47 44.94 50.27
1.00 84.02 66.61 66.77 75.94 87.26 66.31 69.60 75.85

Note: FBAT-L, FBAT-W, and FBAT-E are the FBAT-logrank and FBAT-Wilcoxon due to Lange et al. [2004], and the FBAT-Exp due to Horvath
et al. [2001], respectively.

TABLE V. Type I error and power (%) of the association tests at the nominal significance level of 5% for right-censored
traits in ascertained families

D0

Extreme-value error Normal error

New FBAT-L FBAT-W FBAT-E New FBAT-L FBAT-W FBAT-E

0.00 5.18 4.98 5.00 5.30 5.58 5.32 5.08 5.11
0.25 11.70 9.28 9.38 10.47 12.30 9.18 9.52 10.32
0.50 31.22 22.09 21.72 27.49 34.59 22.07 23.09 27.30
0.75 62.42 45.50 45.59 55.83 66.25 43.69 46.82 54.79
1.00 86.25 68.42 69.03 79.73 89.43 67.87 70.72 79.01

Note: FBAT-L, FBAT-W, and FBAT-E are the FBAT-logrank and FBAT-Wilcoxon due to Lange et al. [2004], and the FBAT-Exp due to Horvath
et al. [2001], respectively.
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identified as suitable for a genetic linkage study.
With non-genotyped individuals included for
linking in the pedigrees, the families selected for
genotyping as part of Genetic Analysis Workshop
14 had a total of 1,614 individuals. Family sizes
ranged from 5 to 32.

We considered the age at onset of ALDX1, the
DSM-III-R1Feighner classification status for alco-
hol dependence. The ages at interview were the
censoring times for the unaffected individuals.
Among the 1,614 individuals in the study, 643
were affected with ALDX1, 626 of whom had
known ages at onset. The final data set for our
analysis consisted of 1,371 individuals, including
626 affected individuals and 745 unaffected
individuals. Of the 626 affected individuals, 424
were males, as opposed to 229 males in the
unaffected individuals.

Figure 3 presents the Kaplan-Meier estimates
of the disease-free probabilities for the onset of
ALDX1. The age-at-onset distributions resemble
Figure 1, with most events occurring between ages
15 and 40. It would be difficult to achieve
approximate normality for such distributions
through simple transformations. Preliminary ana-
lysis revealed that gender was associated with the
age at onset of ALDX1; males developed disease
earlier than females. Previous linkage analysis
showed a linked region on chromosome 14
[Palmer et al., 1999]. We performed association

analysis under model (2) using 172 SNPs on
chromosome 14 from Illumina and included
gender as a covariate in the model. We also
considered the FBAT-logrank, FBAT-Wilcoxon,
and FBAT-Exp. Since the FBATs require nuclear
families whereas the COGA data have extended
pedigrees, we generalized the FBATs by using the
PDT idea of Monks and Kaplan [2000]. The
resulting tests are termed the PDT-logrank, PDT-
Wilcoxon, and PDT-Exp. The FBATs and the PDTs
differ in the calculation of the variance for the test
statistic, although they are asymptotically equiva-
lent for nuclear families.

Figure 4 displays the LOD scores of the VC
method and the three PDTs. The LOD scores were
obtained by dividing the original LR statistics
by 2log10. The LOD score curves from the VC
method and the PDT-logrank reached their peaks
at the same location of 0 cM for SNP rs1972373,
with peak values 2.67 and 2.25, respectively. The
LOD score curve from the PDT-Wilcoxon reached
its peak at the location of 41.7 cM for SNP rs944044
with peak value of 1.56, whereas the LOD score
curve from the PDT-Exp reached its peak at the
location of 0.6 cM for SNP rs1057605 with peak
value of 2.43. The corresponding p-values are
4.55� 10�4, 1.29� 10�3, 7.40� 10�3, 8.22� 10�4,
for the VC method, PDT-logrank, PDT-Wilcoxon,
and PDT-Exp, respectively. With the Bonferroni
correction for multiple testing, only the VC
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Fig. 3. Kaplan-Meier estimates of the disease-free probabilities stratified by the genotype of SNP rs1972373 for the age at onset of

ALDX1 in the COGA study.
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method yielded significant association between
the SNP marker and the onset age of ALDX1 at the
nominal significance level of 0.1, with an adjusted
p-value of 0.078.

Since the results are only marginally significant
and the truth is unknown, no firm conclusions can
be drawn regarding the genetic association or the
comparative value of different approaches.
Nevertheless, this example shows that the pro-
posed method can handle general pedigrees and
can yield meaningfully different results than the
existing methods.

DISCUSSION

QTL mapping with censored data is an im-
portant and challenging problem. The existing
solutions have significant limitations. In this
article, we provide a general approach that unifies
and extends the existing literature. Our approach
is applicable to left- or right-censored traits,
accommodates arbitrary trait distributions, allows
extended pedigrees with missing genotype data,
and provides a common framework for linkage
and association analyses. As demonstrated by the
simulation studies, the new methods can greatly
increase the power of QTL mapping over the best
existing methods.

We have implemented the new methods in a
cost-free computer program (D.Y.L.’s Web site:
http://www.bios.unc.edu/�lin). The computing
time depends mainly on the number of censored
observations in a family. For the COGA data, the
largest number of censored observations in a
family is 20, in which case it took less than 4 min
on an IBM BladeCenter HS-20 machine to per-
form the association analysis at one locus. With
sibship sizes ranging from 2 to 5 in the simula-
tion studies, the analysis at one position took
only 3 sec.

This article is a substantial generalization of our
earlier work on QTL mapping with non-censored
data. Diao and Lin [2005] extended the traditional
VC model for linkage analysis [Amos, 1994] by
allowing an arbitrary transformation, and Diao
and Lin [2006] extended this model further to
association mapping. The semiparametric trans-
formation models proposed in this article are
more general than our previous models in that
they allow time-varying covariates and non-
normal error distributions. As is evident in the
Appendix, trait censoring poses considerable new
challenges, both theoretically and computation-
ally. Simulation studies revealed that applying our
previous methods to censored trait data would
have detrimental effects on the type I error and
power (data not shown).
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In some studies, families are selected on the
basis of the trait values of their members. Li and
Zhong [2002] and Zhong and Li [2004] proposed a
retrospective likelihood approach to correct for
ascertainment bias, which requires that the dis-
ease prevalence is known or can be estimated
externally. de Andrade and Amos [2000] proposed
two ascertainment correction methods: one is to
divide the likelihood by the probability that the
proband falls into the specified ascertainment
region, and the other is to condition on the
observed trait values. They showed that the
power to detect linkage is similar regardless of
whether the data are corrected for ascertainment.
Our simulation results revealed that, even without
ascertainment correction, the proposed association
tests have reasonable type I error and are more
powerful than the existing tests. Further investi-
gation is warranted.

In association studies, one often examines a
large number of SNPs in a chromosomal region.
To guard against an abundance of false-positive
results, one needs to adjust for multiple testing.
The commonly adopted Bonferroni correction is
conservative because the test statistics for SNPs in
LD are correlated. Recently, Lin [2005] proposed
a Monte Carlo procedure that properly accounts
for the correlatedness of polymorphism data. It
would be worthwhile to apply that approach to
the proposed association tests.
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APPENDIX

To accommodate time-varying covariates, we extend
model (2) through the distribution function of Tij

PðTij � tjXij;bij;wij;RijÞ

¼ G

Z t

0

e�bT
b bij�bT

wwij�cTXijðsÞ�RijdLðsÞ
� �

ðA:1Þ

where Xij(t) pertains to the value of Xij at time t, G is
the distribution function of eeij, and LðtÞ ¼ eHðtÞ.
Under G(x) 5 1�e�x, (A.1) corresponds to the
proportional hazards model with random effects
and L is called the cumulative baseline hazard
function. In the absence of time-varying covari-
ates, equation (A.1) is equivalent to equation (2).
The representation given in equation (A.1) shows
that leaving the transformation function in equa-
tion (2) unspecified is tantamount to allowing an
arbitrary distribution of the trait values.

Under model (A.1), the likelihood function for
the set of unknown parameters h ¼ ðbb; bw; c; n;LÞ
is proportional to

Yn

i¼1

Z
Ri

Yni

j¼1

G0
Z Yij

0

e�bT
b bij�bT

wwij�cTXijðsÞ�Rij dLðsÞ
� ��24

�e�bT
b bij�bT

wwij�cTXijðsÞ�RijlðYijÞ

�Dij

� 1�G

Z Yij

0

e�bT
b bij�bT

wwij�cTXijðsÞ�Rij dLðsÞ
� �� �1�Dij

�fiðRi;nÞdRi

#
ðA:2Þ

where l(t) is the derivative of L(t), G0(x) is the
derivative of G(x), and fiðRi;nÞ is the density
function of the random effects Ri indexed by the
variance parameters n. This is a non-parametric
likelihood in that L( � ) is a completely arbitrary
function. It would be natural to estimate h by
maximizing (A.2). The maximum of this function
does not exist if L is restricted to be absolutely con-
tinuous. Thus, we regard L as a right-continuous
function and maximize the following function:

Yn

i¼1

Z
Ri

Yni

j¼1

G0
Z Yij

0

e�bT
b bij�bT

wwij�cTXijðsÞ�Rij dLðsÞ
� ��24

�e�bT
b bij�bT

wwij�cTXijðsÞ�RijLfYijg

oDij

� 1�G

Z Yij

0

e�bT
b bij�bT

wwij�cTXijðsÞ�Rij dLðsÞ
� �� �1�Dij

�fiðRi;nÞdRi

#
ðA:3Þ

where LfYijg is the jump size of LðyÞ at y 5 Yij, i.e.,
the value of LðyÞ at y 5 Yij minus its value right
before Yij. The resulting estimator bh¼ðbbb;bbw;bc;bn; bLÞ
is the non-parametric maximum likelihood esti-
mator of h [Bickel et al., 1993].

The non-parametric maximum likelihood esti-
mator bh possesses the same theoretical properties
as the standard parametric maximum likelihood
estimator in that bh is consistent, asymptotically
normal and statistically efficient. Because L( � ) is
an infinite-dimensional parameter, the proof of
these results involves very advanced mathemati-
cal arguments from modern empirical process

580 Diao and Lin

Genet. Epidemiol. DOI 10.1002/gepi



theory and semiparametric efficient theory. The
interested readers are referred to Zeng et al. [2005]
for a detailed proof for this kind of problem.

It can be shown that bLð�Þ is a step function with
jumps only at YðkÞ, k 5 1,y,K, where YðkÞ is the
kth order statistic of the distinct uncensored trait
values, and K is the total number of uncensored
values. Thus, we maximize (A.3) over bb; bw; c; n,
and LfYðkÞg (k 5 1,y,K) through the quasi-Newton
algorithm [Press et al., 1992]. The unknown
transformation function H(y) in equation (2) is
estimated by bHðyÞ ¼ log bLðyÞ. For the proportional
hazards model, it is convenient to apply the EM
algorithm [Dempster et al., 1977] because we can
take advantage of an explicit solution for L in the
M-step. To ensure the positiveness of the jump
sizes of L( � ) and variance parameters n, we use
the transformed parameters log(LfYðkÞg) and log(n)
instead of LfYðkÞg and n in the maximization. In the
calculation of the likelihood function, we approx-
imate the integrals over Ri through numerical
summations such as the adaptive Gaussian quad-
rature approximation [Pinheiro and Bates, 1995].
We can obtain a good approximation with 10 or
more quadrature points. The Laplace approxima-
tion used by Pankratz et al. [2005] is a special case
of the adaptive Gaussian quadrature approxima-
tion with one quandrature point and may not be
accurate enough.

For the normal error distribution, we can
represent the likelihood function for h in a
computationally more convenient way. Let

Eij ¼ logf
R Tij

0 e�bT
b bij�bT

wwij�cTXijðsÞ dLðsÞg and Ei 5

ðEi1,y,Eini
Þ
T. Then Ei follows a multivariate

normal distribution with mean zero and var-
iance-covariance matrix Vi ¼ s2

m�mi þ 2s2
p�pi þ Ii,

where Ii is the ni-dimensional identity matrix.
Without loss of generality, assume that the first nia

elements of the Dij are 0 and the remaining

nib 5 ni�nia values are 1. In this way, we partition
the data for the ith family into two parts: the first
part consists of censored observations and the
second part consists of uncensored observations.
Let a and b index the censored and uncensored
individuals, respectively. The distribution of Eia

conditional on Eib is given by

EiajEib � Nðl0ia;V
0
iaaÞ

where l0ia ¼ ViabV�1
ibbEib and V0iaa ¼ Viaa �Viab�

V�1
ibbViba. Thus, the likelihood function for the ith

family can be expressed as the product of the
following two terms:

LiaðhÞ ¼
Z 1

Yi1

� � �

Z 1
Yinia

ð2pÞ�nia=2
jV0iaaj

�1=2

� exp �
1

2
ðy� l0iaÞ

TV0�1
iaa ðy� l0iaÞ

� �
dy

and

LibðhÞ ¼ð2pÞ
�nib=2
jVibbj

�1=2 exp �
1

2
ET

ibV�1
ibb Eib

� �

�
Yni

j¼niaþ1

ecTXijðYijÞLfYijgR Yij

0 ecTXijðsÞ dLðsÞ
:

The likelihood function for n families is then
given by

LðhÞ ¼
Yn

i¼1

LiaðhÞLibðhÞ:

The tail probabilities in Lib(h) can be approximated
by a subroutine for computing multivariate
normal probabilities given by Genz [1992]. With
this alternative representation, we can reduce the
order of the integral for the ith family from ni in
(A.3) to nia, i.e., the number of censored observa-
tions in the ith family.
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