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Simple and Efficient Analysis of Disease Association
with Missing Genotype Data

D.Y. Lin,1,* Y. Hu,1 and B.E. Huang1

Missing genotype data arise in association studies when the single-nucleotide polymorphisms (SNPs) on the genotying platform are not

assayed successfully, when the SNPs of interest are not on the platform, or when total sequence variation is determined only on a small

fraction of individuals. We present a simple and flexible likelihood framework to study SNP-disease associations with such missing

genotype data. Our likelihood makes full use of all available data in case-control studies and reference panels (e.g., the HapMap), and

it properly accounts for the biased nature of the case-control sampling as well as the uncertainty in inferring unknown variants. The

corresponding maximum-likelihood estimators for genetic effects and gene-environment interactions are unbiased and statistically

efficient. We developed fast and stable numerical algorithms to calculate the maximum-likelihood estimators and their variances,

and we implemented these algorithms in a freely available computer program. Simulation studies demonstrated that the new approach

is more powerful than existing methods while providing accurate control of the type I error. An application to a case-control study on

rheumatoid arthritis revealed several loci that deserve further investigations.
Introduction

Thanks to comprehensive catalogs of human genetic

variation1,2 and precipitous drops in genotyping costs,

case-control association studies have become the primary

tool in searching for genetic determinants of complex

diseases. There are missing genotype data in all these stud-

ies. Even in a well-designed study with high-quality geno-

typing, some individuals will have missing genotypes at

certain single-nucleotide polymorphism (SNP) sites be-

cause of assay failures. Genotype data may also be missing

by design. For example, it is cheaper to genotype a subset

of study subjects on a high-density platform and the rest

on a low-density platform. Also, it may be economically

feasible to completely sequence a small fraction of individ-

uals, rather than all individuals, in a large study.

There has been an enormous recent interest in untyped

SNPs, i.e., the SNPs that are not even on the genotyping

platform used in the study. This is an extreme form of miss-

ing genotype data in which the SNPs of interest are missing

on all study subjects. Conducting association analysis at

untyped SNPs can facilitate the selection of SNPs to be gen-

otyped in follow-up studies. This kind of analysis is also

highly desirable if we wish to validate the findings of one

study on some other studies that use different genotyping

chips or to perform meta-analysis by combining data from

association scans that use different SNP sets.

The prevailing approach to dealing with missing

genotype data is imputation,3–6 which predicts the missing

genotypes from the observed genotypes at neighboring

SNPs and then uses the predicted values in downstream

association analysis. This strategy, although very intuitive

and useful, is suboptimal. Imputing missing data for cases

and controls together can lead to a bias toward the null
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hypothesis of no association and therefore a loss of power,

whereas imputing missing genotypes for cases and con-

trols separately can inflate type I error rates.3,7,8

An alternative, less ambitious approach is to use the haplo-

type frequencies of neighboring SNPs to estimate the allele

frequencies of the untyped SNP.9–11 This strategy is easy to

implement but is restricted to the comparison of allele fre-

quencies between cases and controls. The estimation of the

allele frequencies may be inaccurate, especially for cases,10

so the power of the corresponding association test may be

compromised. In addition, some of the variance estimators

for the estimated allele frequencies require haplotype data.

In this article, we provide a general likelihood-based

framework for handling any form of missing genotype

data. We derive the observed-data likelihood that properly

reflects the biased nature of the case-control sampling and

that incorporates appropriate external data, such as the

HapMap data. The maximization of the observed-data like-

lihood leads to valid and efficient analysis of genetic effects

and gene-environment interactions. We demonstrate

through simulation studies that our approach is more

powerful than the two existing approaches mentioned

above while providing correct control of the type I error.

We illustrate the new method through an application to

a case-control study on rheumatoid arthritis (RA [MIM

180300]). The software implementing the new method

can be downloaded from our lab website.

Material and Methods

We consider a set of M SNPs that are in linkage disequilibrium

(LD). Each SNP is biallelic with allele values 0 and 1. The SNP ge-

notypes may be missing. We use the known genotypes of the

SNPs that are in LD with the SNP with missing genotypes to infer
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its unknown values. To this end, we consider the joint distribution

of the M SNPs. Let G denote the multilocus genotype of the

M SNPs and H the corresponding diplotype. Suppose that the

M SNPs have a total of K haplotypes, each of which is a unique

sequence of 0s and 1s. We denote the K haplotypes by h1, $$$,

hK, with frequencies p1, $$$, pK. We write H ¼ (hk, hl) if the diplo-

type consists of haplotypes hk and hl. Note that H¼ (hk, hl) implies

that G ¼ hk þ hl, where the summation is taken component-wise.

Let Y denote the disease status (1 ¼ disease, 0 ¼ no disease). The

effects of SNP genotypes on the risk of disease can be formulated

through the following logistic regression model:

PðY ¼ 1 jH ¼ ðhk,hlÞÞ ¼
eaþbTZðhk ,hlÞ

1þ eaþbTZðhk ,hlÞ
, (1)

where a is an intercept term, b pertains to log-odds ratios, and

Z(hk, hl) is a (possibly vector-valued) genotype score induced by

the diplotype (hk, hl). In this article, all vectors are column vectors,

and aT denotes the transpose of a. If we are interested in the

additive effect of a single SNP, then we set Z(hk, hl) to be the value

of (hkþ hl) at that SNP position; if we are interested in the recessive

effect, then Z(hk, hl) indicates whether the value of (hk þ hl) at the

SNP of interest is equal to 2 or not; dominant and codominant

effects can be similarly modeled. We can define Z(hk, hl) to formu-

late the joint effects of all M SNPs or any subset of them.

Suppose that we have a case-control study with a total of

n subjects. For i ¼ 1, $$$, n, let Yi and Gi denote the values of

Y and G for the ith subject. The values of Gi may be missing at

any positions. To reflect the biased nature of the case-control

sampling, we adopt the retrospective likelihood Pn
i ¼ 1P(GijYi).

Under Model 1 with rare disease and Hardy-Weinberg equilibrium,

this likelihood takes the form

LSðqÞ ¼
Yn

i¼1

P
ðhk ,hlÞ�Gi

eYib
TZðhk ,hlÞpkplP

k,l eYib
TZðhk ,hlÞpkpl

, (2)

where q ¼ (bT, pT)T, p ¼ (p1, $$$, pK)T, the summations in both the

numerator and denominator are taken over k ¼ 1, ., K and l ¼
1, ., K, and (hk, hl) ~Gi means that the diplotype (hk, hl) is compat-

ible with the observed value of genotype Gi (i.e., hk þ hl ¼ Gi at all

SNP sites with no missing values). We maximize LS(q) to obtain the

maximum-likelihood estimator (MLE) of q. The maximization can

be carried out through the Newton-Raphson algorithm described

in Appendix A.

The standard approach to the problem of missing genotypes is

to remove the subjects with missing values. This strategy can be

highly inefficient, especially when there is substantial missingness

and different subjects are missing on different SNPs. The proposed

MLE method does not remove any subjects and uses all the avail-

able data to perform efficient analysis.

To reduce cost, we may purposely set some genotypes to missing.

In a large study, for instance, it is cost effective to genotype a subset

of individuals with a high-density platform and the rest with a low-

density one. Likewise, it may be economically feasible to determine

complete sequence variation for only a small fraction of individuals

rather than all individuals. The MLE approach is particularly suited

to such situations, allowing efficient analysis at all the SNPs of the

high-density platform and for complete sequence variation.

If one of the M SNPs is untyped (i.e., not present on the genotyp-

ing platform used for the study) or missing on all study subjects,

then there is no information in the study data to determine the

joint distribution of the M SNPs. We can ascertain the joint distri-

bution from an external reference database, such as the HapMap.1
The Am
Naturally, the case-control study and the reference panel are as-

sumed to be generated from the same underlying population. We

denote the likelihood for p based on the reference database by LR(p).

To be specific, we consider the HapMap trio data. Suppose that

we have a total of ~n trios, which is 30 for the Centre d’Etude du

Polymorphisme Humain (CEU) sample. For j ¼ 1,/,~n, the geno-

type data for the jth trio consist of Gj ¼ (GFj, GMj, GCj), where

GFj, GMj, and GCj denote the genotypes for the father, mother,

and child, respectively. In this case,

LRðpÞ ¼
Y~n

j¼1

X
ðhk ,hl ,hk0 ,hl0 Þ�Gj

pkplpk0 pl0 , (3)

where the summation is taken over k, l, k0, l0 ¼1, ., K, and (hk, hl, hk0,

hl0)~Gj means that (hk, hl) is compatible with GFj, (hk0, hl0) is compat-

ible with GMj, and (hk, hk0), (hk, hl0), (hl, hk0), or (hl, hl0) is compatible

with GCj. The likelihood for unrelated individuals is a special case of

Equation 3 with missing genotypes for all parents.

The likelihood for q that combines the study data and reference

database is

LCðqÞ ¼ LSðqÞLRðpÞ:

We maximize LC(q) through the Newton-Raphson algorithm de-

scribed in Appendix B. The resulting MLE of q is approximately

unbiased and normally distributed. Furthermore, the MLE is statis-

tically efficient in that it has the smallest variance among all valid

estimators and the corresponding test of association is the most

powerful among all valid tests based on the same data and same

assumptions.

The above framework allows association analysis at all the SNPs

in the reference database. To maximize efficiency, we choose a set

of (M � 1) SNPs that provides the best prediction of the missing

SNP genotype. The accuracy of prediction is measured by Rs
2 of

Stram12 or equivalently by MD of Nicolae.13 For any SNP of inter-

est, we find the set of (M � 1) SNPs within 100 kb, for example,

that yields the largest value of Rs
2. If Rs

2 is close to 1, then the anal-

ysis will be nearly as efficient as if the SNP of interest is measured

on all study subjects.

Performing association tests at untyped SNPs yields a wider range

of SNPs to be considered for genotyping in follow-up studies. An-

other application is to validate the findings of one study on other

studies that use different genotyping chips. Indeed, it is desirable

to combine data across studies so as to increase power to detect

small genetic effects. To perform this kind of meta-analysis, we in-

clude in LS(q) all the subjects from the studies of similar populations

and multiply LC(q) over different types of populations.

We can estimate the allele frequencies for any SNPs of interest

by using the MLE of p. To infer missing genotypes, we calculate

the posterior probabilities of individual diplotypes

PfHi ¼ ðhk,hlÞ jGi,Yig ¼
Iððhk,hlÞ�GiÞeYib

TZðhk ,hlÞpkplP
ðhk

0 ,h
l
0 Þ�Gi

eYib
TZðh

k
0 ,h

l
0 Þpk

0 pl
0
,

k,l ¼ 1,.,K; i ¼ 1,.,n,

where I($) is the indicator function and the unknown parameters

b and p are evaluated at their MLEs. By taking appropriate sums of

these posterior probabilities, we can obtain the posterior probabil-

ities for the genotypes of interest.

We can extend our framework to study gene-environment inter-

actions. Let X represent environmental factors. We expand Model

1 as follows:
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PðY ¼ 1 jH ¼ ðhk,hlÞ, X ¼ xÞ ¼ eaþbTZðhk ,hl ,xÞ

1þ eaþbTZðhk ,hl ,xÞ
,

where Z(hk, hl, x) is a specific vector function of (hk, hl) and x. The

retrospective likelihood
Qn

i¼1PðGi,XijYiÞ involves the unknown

distribution of X, which is high-dimensional. We use the

profile-likelihood arguments of Lin and Zeng14 to eliminate the

distribution of X and replace Equation 2 with the following profile

likelihood:

LSðqÞ ¼
Yn

i¼1

P
ðhk ,hlÞ�Gi

eYifmþbTZðhk ,hl ,XiÞgpkplP
k,l,y eyfmþbTZðhk ,hl ,XiÞgpkpl

, (4)

where q ¼ (m, bT, pT)T, m is an unknown constant, and the summa-

tion in the denominator is taken over k, l ¼ 1, ., K and y ¼ 0, 1.

The maximizations of this likelihood and the corresponding com-

bined likelihood LC(q) are discussed in Appendices A and B.

Whereas our approach integrates inference of missing geno-

types and estimation of odds ratios into a single likelihood frame-

work, the imputation approach first imputes missing genotypes

(without reference to phenotype information) and then assesses

the association between the imputed genotypes and the pheno-

type. There are various ways to impute missing genotypes.3–6 An

attractive recent method5 generates each individual’s genotype

from a hidden Markov model in which the hidden states are a

sequence of pairs of the haplotypes observed in the reference

panel and in which mutations and recombinations are allowed.

Given the imputed genotypes, one can use the most likely geno-

type, the expected genotype counts, or the probability distribu-

tion of the genotype for each individual in the ensuing association

test. Marchini et al.5 recommended the use of the probability

distribution because it accounts for more of the uncertainty in im-

puted genotypes. Because it disregards phenotype information

when imputing missing genotypes and ignores case-control

sampling in association analysis, the imputation approach may

not provide unbiased estimation of odds ratios at causal SNPs.
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Figure 1. Type I Error of Association Tests on SNP 61 at the
1% Nominal Significance Level When SNP 60 Has an
Additive Effect on the Risk of Disease
The analysis includes SNPs 60–64, which are missing indepen-
dently with the same probability.

Nicolae10 estimated the allele frequency for the untyped

SNP by a weighted sum of the haplotype frequencies of the

(M � 1) genotyped SNPs, with the weights determined by

the haplotype frequencies of the M SNPs in the reference

panel, and he dubbed the corresponding association test

TUNA (testing untyped alleles). Zaitlen et al.11 proposed a class

of tests based on the weighted sum of haplotype frequencies,

which includes Nicolae’s test and the single-haplotype test of

de Bakker et al.9 as special cases, and they found the set of

weights used by Nicolae10 to be optimal. The variance estima-

tors provided by Zaitlen et al.11 are based on the multinomial

distribution of haplotypes and thus require the use of haplo-

type data rather than genotype data. According to the docu-

mentation for the TUNA software, there are numerical difficul-

ties with the testing procedure originally suggested by

Nicolae.10 The TUNA software estimates the variance of the

test statistic by two methods: an asymptotic interpretation of

MD and bootstrap. There is no explanation of the first method,

d the second method is computationally intensive. We propose

estimate the variance of the weighted sum of (estimated)

aplotype frequencies by using the information matrix for

e haplotype frequencies based on (unphased) genotype data.

his variance estimation is statistically valid and computationally

ficient.

esults

imulation Studies

e used Monte Carlo simulation to evaluate the new and

isting methods. We simulated genotypes for various sets

f SNPs according to the haplotype distributions observed

the CEU sample of the HapMap project.1 We generated

e disease status from Model 1 with a potentially causal

P. For each scenario, we set the overall disease rate to ap-

roximately 5% and obtained 10,000 simulated data sets

ith 1,000 cases and 1,000 controls.

We first studied the problem of genotyped SNPs with

issing data. We were particularly interested in SNPs

0–64 on chromosome 18 of the CEU sample in the

apMap genome-wide data. This set of SNPs was previ-

usly considered by Lin and Huang,8 who provided its

aplotype frequencies. The LD among these five SNPs is

ot particularly strong. We set SNP 60 to be causal with

additive effect. We let the genotypes of the five SNPs

e missing independently with the same probability and

erformed multi-SNP analysis by including all five SNPs

the logistic model. We compared the new method

the imputation method based on the output of fast-

HASE.4

Figures 1 and 2 display, respectively, the type I error of

e association tests at SNP 61, which is null, and the
2008



power of the association tests at SNP 60, which is causal.

Clearly, the new method maintains its type I error around

the nominal significance level. The imputation method

based on fastPHASE has inflated type I error, the inflation

worsening as more genotypes are missing and as the

odds ratio of the causal SNP increases. The new method

is more powerful than fastPHASE. The improvement of

the new method over the standard complete-case analysis

is substantial. The loss of power—caused by missing geno-

types—for the new method is rather moderate, even when

there is substantial missingness and the LD among the

SNPs is weak.

We extensively studied the problem of untyped SNPs.

We considered the two regions shown in Tables 1 and 2

of Nicolae,10 as well as various subsets of the first 100

SNPs on chromosome 18 of the CEU sample in the Hap-

Map genome-wide data. For each region, we set a poten-

tially causal SNP to be untyped and performed single-

SNP analysis on that SNP. In addition to the case-control

sample, we generated a reference panel with 30 trios. All

the case-control subjects had missing values at the un-

typed SNPs, whereas the trios had known genotypes at all

SNPs.

We evaluated the new method as well as the two existing

approaches mentioned earlier: imputation of missing ge-

notypes and estimation of allele frequencies. For the impu-

tation approach, we used the EM algorithm to estimate

the haplotype frequencies of the M SNPs from the trio

data and then determined the probability distribution of

the untyped SNP. (Other imputation methods are expected

to yield similar estimates when M is small.) We then used

the probability distribution in the corresponding associa-

tion test, as recommended by Marchini et al.5 For the
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Figure 2. Power of Association Tests on SNP 60, which Has
an Additive Effect on the Risk of Disease, at the 1% Nomi-
nal Significance Level
The analysis includes SNPs 60–64, which are missing indepen-
dently with the same probability. For complete-case analysis,
all subjects with missing data are removed. For full-data anal-
ysis, the missing genotypes are replaced by their true values.

allele-frequency estimation approach, we used the

method of Nicolae,10 together with our proposed vari-

ance estimator.

In all simulation studies, the new method estimated

the odds ratio with little bias (see Supplemental Data

available online). The variance estimator for the esti-

mated odds ratio accurately reflects the true variation.

The corresponding Wald test had proper type I error,

and the confidence interval had correct coverage; see

Supplemental Data. The Nicolae method (with our var-

iance estimator) also had appropriate type I error. The

imputation method did not always preserve the type I

error. For Table 1 of Nicolae,10 the imputation method

had type I error of approximately 3% (under the addi-

tive model) at the targeted significance level of 1%.

Figures 3 and 4 contrast the power curves of the three

ompeting methods for four regions on chromosome 18

f the HapMap CEU sample under the additive and

ecessive models, respectively. The new method is more

owerful than the two existing methods, especially when

s
2 is small. The power differences are much more profound

nder the recessive models than under the additive models.

he imputation method tends to be more powerful than

icolae’s method.

heumatoid Arthritis Data

he North American Rheumatoid Arthritis Consortium

onducted a case-control study to identify genetic factors

hat predispose for rheumatoid arthritis (RA). RA is a com-

lex disease with a moderately strong genetic component.

he recurrence-risk ratio for siblings is estimated at around

in Caucasians. The prevalence in Caucasians is approxi-

ately 0.8%. Females tend to be at higher risk than males,

ith an approximately 3 to 1 preponderance. The mean

ge of disease onset is in the fifth decade, with considerable

ariability.

A total of 460 cases were selected from throughout the

nited States. Confirmation of RA diagnosis was obtained

rom patients’ rheumatologists. Radiographs of the hands

nd wrists were also obtained to document the presence

nd extent of joint involvement. A total of 460 unrelated

ontrols from Long Island, New York City were fre-

uency-matched to the cases by age and sex. All study sub-

ects are non-Ashkenazi Caucasians.

A dense panel of 2,297 SNPs were genotyped by Illumina

or an approximately 10 Mb region of chromosome 18q

hat showed evidence for linkage in the U.S. and French

inkage scans. The SNPs were a custom set selected from
rican Journal of Human Genetics 82, 444–452, February 2008 447



dbSNP ‘‘double hit’’ SNPs on the basis of their distribution

and favorable assay design characteristics. The 2,297 SNPs

represent the SNPs successfully typed with minor allele fre-

quency greater than 5% out of the 3,072 SNPs attempted.

We applied the new method to this study, with the Hap-

Map CEU sample as the reference panel. As an illustration,

we show in Figure 5 the results in a 315 kb region containing

the ferrochelatase gene (FECH [MIM 177000]). This region

covers 100 SNPs genotyped in the RA study and 210

untyped HapMap SNPs with minor allele frequency (MAF)

> 5%. For each untyped SNP, we found a set of four geno-

typed SNPs within 30 kb that yields the largest Rs
2. Only

four untyped SNPs had Rs
2 < 0.25, all of which had MAF

< 7%. There were 94% of the SNPs with Rs
2 > 0.5, 78%

with Rs
2 > 0.8, 67% with Rs

2 > 0.9, and 50% with Rs
2 ¼ 1.

The figure displays the results for both the genotyped and

untyped SNPs. The inclusion of the results at the untyped

SNPs enables us to have a much more detailed view of the

region and provides stronger evidence of association than

those of the genotyped SNPs alone. The strength of associ-

ation signal from the untyped SNPs is similar to that of

the genotyped SNPs at the beginning and the end of the re-

gion. In the middle of the region, most of the signal comes

from the untyped SNPs. Among the ten most significant

Figure 3. Power of Association Tests
for Untyped SNPs at the 1% Nominal Sig-
nificance Level under Additive Models
for Four Regions of Five SNPs on Chro-
mosome 18 of the HapMap CEU Sample
(A) SNP 21 in the region of SNPs 20–24
with MAF of 0.40 and Rs

2 of 0.24.
(B) SNP 22 in the region of SNPs 20–24
with MAF of 0.25 and Rs

2 of 0.42.
(C) SNP 26 in the region of SNPs 24–28
with MAF of 0.25 and Rs

2 of 0.85.
(D) SNP 65 in the region of SNPs 63–67
with MAF of 0.37 and Rs

2 of 0.62.

untyped SNPs, two had estimated

odds ratios of 1.65 and 1.54, and the

rest had estimated odds ratios of about

1.4. The ten most significant geno-

typed SNPs all had estimated odds

ratios of about 1.4.

Discussion

We have presented a simple and co-

herent framework for dealing with

missing genotypes. Our approach

fully accounts for the uncertainty in

predicting the unknown variants, so

that the estimated odds ratios are

attached with appropriate standard-

error estimates and the corresponding

association tests have correct type I

error, even if the unknown variants are predicted with poor

accuracy. For genotyped SNPs with missing values, our ap-

proach is likely to be more useful when genotypes are miss-

ing by design rather than by chance. With the continuing

improvements in genotyping technologies, missing data

for genotyped SNPs have been reduced rapidly; however,

it may not be economically feasible to genotype all study

subjects on a high-density platform or to completely se-

quence a large number of individuals.

For untyped SNPs, it is necessary to use external data to

determine the joint distribution of the untyped and typed

variants. For genotyped SNPs with partial missing data, it is

not necessary to use external data, so greater robustness

can be achieved by employing the likelihood based solely

on the study data. For untyped SNPs, Nicolae’s method

tends to be less powerful than the new method and the im-

putation method. However, Nicolae’s method is expected

to be more robust to the choice of the reference panel be-

cause the genotypes of the reference panel enter into the

test statistic only as weights.

The first step of our method is very similar to that of

Nicolae’s in that both methods identify a small number

of genotyped SNPs that provides the best prediction for

the untyped SNP. By contrast, Marchini et al.5 used
448 The American Journal of Human Genetics 82, 444–452, February 2008



information from all markers in LD with the untyped SNP

in a way that decreases with genetic distance from the un-

typed SNP. The latter approach avoids the decision to

Figure 4. Power of Association Tests
for Untyped SNPs at the 1% Nominal Sig-
nificance Level under Recessive Models
for Four Regions of Five SNPs on Chro-
mosome 18 of the HapMap CEU Sample
(A) SNP 21 in the region of SNPs 20–24
with MAF of 0.40 and Rs

2 of 0.24.
(B) SNP 22 in the region of SNPs 20–24
with MAF of 0.25 and Rs

2 of 0.42.
(C) SNP 26 in the region of SNPs 24–28
with MAF of 0.25 and Rs

2 of 0.85.
(D) SNP 65 in the region of SNPs 63–67
with MAF of 0.37 and Rs

2 of 0.62.

choose a set of markers, but requires

an approximate population-genetics

model. Although our approach uses

a small set of markers to predict the

unknown variants, that set is chosen

to provide the best prediction among

all relevant sets of markers in LD with

the untyped SNP. This strategy yields

a very accurate prediction for most

HapMap SNPs, as demonstrated in

the RA example.

Although the numerical results re-

ported in this article were focused

on main genetic effects, our approach

can be used to detect gene-gene and

gene-environment interactions. The

imputation approach can also be

used to test interactions by using the

Figure 5. Results of Association Tests
for Additive Effects in the Region of
the FECH Gene from the RA Data
�log10(p values) for the genotyped and
untyped SNPs are shown in blue circle
and red diamonds, respectively.

most likely genotype or the expected genotype counts,

but it would be difficult to use the probability distribution

of the genotype.
The American Journal of Human Genetics 82, 444–452, February 2008 449



A unique feature of our approach is that it provides

valid estimates of odds ratios for genetic effects as well

as gene-environment interactions. Although the first

scan of the genome is typically done by association tests,

most genome-wide association studies have reported

odds-ratio estimates. Our method offers such estimates,

together with appropriate confidence intervals, for un-

typed SNPs.

Another advantage of our approach is that it is computa-

tionally very fast. It takes less than 1 s on an IBM HS21

machine to perform the association analysis at an untyped

SNP for a study with 2,000 individuals. Thus, the analysis

of 3 million untyped SNPs can be completed overnight

with a cluster of 50 machines. The software—called

SNPMStat—implementing the new method is available at

the Lin lab website.

Our simulation studies were concerned with a small

number of markers and did not incorporate the hidden

Markov model of Marchini et al.5 It would be highly valu-

able to compare the performance of competing methods in

various genome-wide association studies as well as in large-

scale simulation studies mimicking real data. Indeed, this

task is currently taken on by the imputation subgroup of

the GAIN Collaborative Research Group.15

Like the existing methods, our method requires Hardy-

Weinberg equilibrium. This assumption may be violated

when there is population substructure. We can relax this

assumption by incorporating an inbreeding coefficient

into the Hardy-Weinberg proportions and modifying the

numerical algorithms accordingly.14 If the study involves

different race groups, then the likelihoods LC(q) should

be constructed separately for each race group and then

multiplied together.

It is of interest to assess genome-wide statistical signifi-

cance. Because of the strong LD among densely distributed

polymorphisms, the commonly used Bonferroni correction

is punitively conservative, especially when all HapMap

SNPs are tested. The permutation test is not computation-

ally feasible and may be inappropriate for detecting gene-

environment interactions. We are currently exploring the

use of the Monte Carlo approach of Lin,16 which is efficient

and versatile.

There has been a considerable debate about whether

one should use SNP-based or haplotype-based analysis.

The relative power depends on several factors.9,10,17–19

This article assumes that SNP-based analysis is of primary

interest. So far, the first scan of the genome has always

been performed with single-SNP tests. Our method uses

the haplotype distribution to infer missing genotypes

and can be unified with our earlier work on the analysis

of haplotype-disease association.14

This article is focused on case-control studies with refer-

ence panels consisting of trios. We are currently extending

our approach to other study designs and phenotypes, as

well as other types of reference panels. Indeed, our software

already allows both trios and unrelated individuals as refer-

ence panels.
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Appendix A

Maximization of Case-Control Likelihood

We show how to maximize the likelihood of the case-

control study given in Equation 4. The maximization of

the likelihood in Equation 2 is similar but simpler. In the

absence of environmental factors, the maximization of the

likelihood in Equation 4 yields the same estimators of

b and p as that of Equation 2. Thus, Equation 2 can be treated

as a special case of Equation 4 for numerical purposes.

We use the EM algorithm20,21 to obtain initial estimates

of haplotype frequencies based on the control sample. To

avoid numerical instabilities in the maximization of the

likelihood in Equation 4, we exclude those haplotypes

whose estimated frequencies are 0 or very close to 0, i.e.,

< max(2/n, 0.001). We redefine K as the total number of

haplotypes that are retained.

To accommodate the constraints
PK

k¼1 pk ¼ 1 and pk R

0 (k ¼ 1, ., K), we define pk* ¼ pk/pK and nk ¼ log pk*. Write

n ¼ (n1, ., nK�1)T, q ¼ (m, bT, nT)T, and

Wðhk,hl,y,xÞ ¼

2
6666664

y
yZðhk,hl,xÞ

Iðhk ¼ h1Þ þ Iðhl ¼ h1Þ
Iðhk ¼ h2Þ þ Iðhl ¼ h2Þ

«
Iðhk ¼ hK�1Þ þ Iðhl ¼ hK�1Þ

3
7777775
:

Then Equation 4 can be written as

LSðqÞ ¼
Yn

i¼1

P
ðhk ,hlÞ�Gi

eqTWðhk,hl ,Yi ,XiÞP
k,l,y eqTWðhk,hl ,y,XiÞ

:

The corresponding score function and information matrix

are

USðqÞ ¼
Xn

i¼1

8><
>:
P
ðhk ,hlÞ�Gi
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respectively, where a52 ¼ aaT. To obtain the MLE q̂, we

solve the equation US(q) ¼ 0 by the Newton-Raphson

algorithm. The initial values of m and b are set to 0, and

the initial value of n is based on the estimated haplotype

frequencies from the control sample.

By definition,

p1 ¼
en1

1þ
PK�1

k¼1 enk

, /, pK�1 ¼
enK�1

1þ
PK�1

k¼1 enk

,

pK ¼
1

1þ
PK�1

k¼1 enk

:

We use the above transformations to obtain the MLE

ðp̂1,.,p̂kÞ from ðn̂1,.,n̂K�1Þ. Let J be the Jacobian matrix

of (m, bT, p1, ., pK)T with respect to (m, bT, n1, ., nK�1)T.

That is, the first row of J is the derivative of m with respect

to (m, bT, n1, ., nK�1)T, which equals (1, 0, ., 0); the other

rows are calculated similarly. Then the standard-error

estimates for ðm̂,b̂T,p̂1,.,p̂KÞT are the square roots of the

diagonal elements in the matrix JS�1
S ðq̂ÞJT.

Appendix B

Maximization of Combined Likelihood

We obtain initial estimates of haplotype frequencies for

the M SNPs by applying the EM algorithm to the likelihood

for the reference-trio data given in Equation 3. We exclude

the haplotypes with estimated frequencies < max(2/n,

0.001) and redefine K as the number of retained haplo-

types. As in Appendix A, we reparametrize p as n and rede-

fine q ¼ (m, bT, nT)T. Then Equation 3 becomes

LRðnÞ ¼

2
4Y~n

j¼1

X
ðhk,hl ,hk0 ,hl0 Þ�Gj

enTQ
klk
0
l
0

3
5�1þ

XK�1

k¼1

enk

��4~n

,

where
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0
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0 ¼
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�
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�
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�
3
5:

The corresponding score function and information

matrix are
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SRðnÞ ¼ 4~n

8>><
>>:

DðnÞ
1þ

PK�1
k¼1 enk

� EðnÞ52

ð1þ
PK�1

k¼1 enk Þ2

9>>>=
>>>;

�
P~n

j¼1

2
664
P
ðhk ,hl ,hk0 ,hl0 Þ�Gj

e
nTQ

klk
0
l
0

Q52
klk0 l0P

ðhk ,hl ,hk0 ,hl0 Þ�Gj
e

nTQ
klk
0
l
0
�

8><
>:
P

ðhk ,hl ,hk0 ,hl0 Þ�Gj
e

nTQ
klk
0
l
0

Q
klk
0
l
0P

ðhk ,hl ,hk0 ,hl0 Þ�Gj
e

nTQ
klk
0
l
0

9>=
>;

523
775,

respectively, where
The Am
EðnÞ ¼

2
664

en1

en2

«
enK�1

3
775, DðnÞ ¼

2
664

en1 0 / 0
0 en2 / 0
« « « «
0 0 / enK�1

3
775

The score function and information matrix associated

with the combined likelihood LC(q) are

UCðqÞ ¼ USðqÞ þ
�

0
URðnÞ

�

and

SCðqÞ ¼ SSðqÞ þ
�

0 0
0 SRðnÞ

�
,

respectively. To obtain the MLE q̂, we solve the equation

UC(q) ¼ 0 by the Newton-Raphson method. The initial

values of m and b are set to 0, and the initial value of n is

based on the estimated haplotype frequencies of the refer-

ence database. We then transform n to p and obtain the

standard-error estimates for b̂ and p̂ in the same manner

as in Appendix A.

Supplemental Data

One table is available at http://www.ajhg.org/.
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Web Resources

The URLs for data presented herein are as follows:

The North American Rheumatoid Arthritis Consortium, http://

www.naracdata.org

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/Omim/

SNPMStat (for C code for implementing the new method), http://

www.bios.unc.edu/~lin/software/SNPMStat
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