Likelihood-Based Inference on Haplotype Effects
in Genetic Association Studies

D. Y. LIN and D. ZENG

A haplotype is a specific sequence of nucleotides on a single chromosome. The population associations between haplotypes and disease
phenotypes provide critical information about the genetic basis of complex human diseases. Standard genotyping techniques cannot dis-
tinguish the two homologous chromosomes of an individual, so only the unphased genotype (i.e., the combination of the two homologous
haplotypes) is directly observable. Statistical inference about haplotype—phenotype associations based on unphased genotype data presents
an intriguing missing-data problem, especially when the sampling depends on the disease status. The objective of this article is to provide
a systematic and rigorous treatment of this problem. All commonly used study designs, including cross-sectional, case-control, and cohort
studies, are considered. The phenotype can be a disease indicator, a quantitative trait, or a potentially censored time-to-disease variable.
The effects of haplotypes on the phenotype are formulated through flexible regression models, which can accommodate various genetic
mechanisms and gene—environment interactions. Appropriate likelihoods are constructed that may involve high-dimensional parameters.
The identifiability of the parameters and the consistency, asymptotic normality, and efficiency of the maximum likelihood estimators are es-
tablished. Efficient and reliable numerical algorithms are developed. Simulation studies show that the likelihood-based procedures perform
well in practical settings. An application to the Finland—United States Investigation of NIDDM Genetics Study is provided. Areas in need
of further development are discussed.
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1. INTRODUCTION

In the early 1900s there was a fierce debate between Gregor
Mendel’s followers and the biometrical school led by Francis
Galton and Karl Pearson as to whether the patterns of inheri-
tance were consistent with Mendel’s law of segregation or with
a “blending”-type theory. Fisher (1918) reconciled the two con-
flicting schools by recognizing the difference in the genetic ba-
sis for the variation in the trait being studied. For the traits that
the Mendelists studied, the observed variation was due to a sim-
ple difference at a single gene; for the traits studied by the bio-
metrical school, individual differences were attributed to many
different genes, with no particular gene having a singly large
effect.

Like the traits studied by Mendel, many genetic disorders,
such as Huntington disease and cystic fibrosis, are caused by
mutations of single genes. The genes underlying a number of
these Mendelian syndromes have been discovered over the last
20 years through linkage analysis and positional cloning (Risch
2000). The same approach, however, is failing to unravel the
genetic basis of complex human diseases (e.g., hypertension,
bipolar disorder, diabetes, schizophrenia), which are influenced
by a variety of genetic and environmental factors, just like
the traits studied by the biometrical school a century ago. It
is widely recognized that genetic dissection of complex hu-
man disorders requires large-scale association studies, which
relate disease phenotypes to genetic variants, especially single
nucleotide polymorphisms (SNPs) (Risch 2000; Botstein and
Risch 2003).

SNPs are DNA sequence variations that occur when a sin-
gle nucleotide in the genome sequence is altered. SNPs make
up about 90% of all human genetic variation and are believed
to have a major impact on disease susceptibility. Aided by
the sequencing of the human genome (International Human
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Genome Sequencing Consortium 2001; Venter et al. 2001),
geneticists have identified several million SNPs (International
SNP Map Working Group 2001). With current technology, it
is economically feasible to genotype thousands of subjects for
thousands of SNPs. These remarkable scientific and techno-
logical advances offer unprecedented opportunities to conduct
SNPs-based association studies aimed at unraveling the genetic
basis of complex diseases.

There is one of three possible genotypes at each SNP site:
homozygous with allele A, homozygous with allele a, or het-
erozygous with one allele A and one allele a. Thus assessing
the association between a SNP and a disease phenotype is a
trivial three-sample problem. It is, however, desirable to deal
with multiple SNPs simultaneously. One appealing approach is
to consider the haplotypes for multiple SNPs within candidate
genes (Hallman, Groenemeijer, Jukema, and Boerwinkle 1999;
International SNP Map Working Group 2001; Patil et al. 2001;
Stephens, Smith, and Donnelly 2001).

The haplotype (i.e., a specific combination of nucleotides
at a series of closely linked SNPs on the same chromosome
of an individual) contains information about the protein prod-
ucts. Because the actual number of haplotypes within a can-
didate gene is much smaller than the number of all possible
haplotypes, haplotyping serves as an effective data-reduction
strategy. Using SNP-based haplotypes may yield more pow-
erful tests of genetic associations than using individual, un-
organized SNPs, especially when the causal variants are not
measured directly or when there are strong interactions of mul-
tiple mutations on the same chromosome (Akey, Jin, and Xiong
2001; Fallin et al. 2001; Li 2001; Morris and Kaplan 2002;
Schaid, Rowland, Tines, Jacobson, and Poland 2002; Zaykin
et al. 2002; Schaid 2004).

Determining haplotype requires the parental origin or ga-
metic phase information, which cannot be easily obtained with
the current genotyping technology. As a result, only the un-
phased genotype (i.e., the combination of the two homologous
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haplotypes) can be determined. Statistically speaking, this is a
missing-data problem in which the variable of interest pertains
to two ordered sequences of 0’s and 1’s but only the summa-
tion of the two sequences is observed. This type of missing-data
problem has not been studied in the statistical literature.

Many authors (e.g., Clark 1990; Excoffier and Slatkin 1995;
Stephens et al. 2001; Zhang, Pakstis, Kidd, and Zhao 2001; Niu,
Qin, Xu, and Liu 2002; Qin, Niu, and Liu 2002) have proposed
methods to infer haplotypes or estimate haplotype frequencies
from unphased genotype data. To make inference about haplo-
type effects, one may then relate the probabilistically inferred
haplotypes to the phenotype through a regression model (e.g.,
Zaykin et al. 2002). This approach does not account for the vari-
ation due to haplotype estimation, and does not yield consistent
estimators of regression parameters.

A growing number of articles have been published in genetic
journals on making proper inference about the effects of haplo-
types on disease phenotypes. Most of these articles have dealt
with case-control studies. Specifically, Zhao, Li, and Khalid
(2003) developed an estimating function that approximates the
expectation of the complete-data prospective-likelihood score
function given the observable data. This method assumes that
the disease is rare and that haplotypes are independent of envi-
ronmental variables, and it is not statistically efficient. Epstein
and Satten (2003) derived a retrospective likelihood for the
relative risk that does not accommodate environmental vari-
ables. Stram et al. (2003) proposed a conditional likelihood
for the odds ratio assuming that cases and controls are cho-
sen randomly with known probabilities from the target popula-
tion, but did not consider environmental variables or investigate
the properties of the estimator. Building on the earlier work of
Schaid et al. (2002), Lake et al. (2003) discussed likelihood-
based inference for cross-sectional studies under generalized
linear models. Seltman, Roeder, and Devlin (2003) provided a
similar discussion based on the cladistic approach. Recently,
Lin (2004) showed how to perform Cox’s (1972) regression
when potentially censored age at onset of the disease observa-
tions are collected in cohort studies. All of the aforementioned
work assumes Hardy—Weinberg equilibrium (Weir 1996, p. 40).
Simulation studies (Epstein and Satten 2003; Lake et al. 2003;
Satten and Epstein 2004) revealed that violation of this assump-
tion can adversely affect the validity of the inference.

The aim of this article is to address statistical issues in esti-
mating haplotype effects in a systematic and rigorous manner.
For case-control studies, we allow environmental variables and
derive efficient inference procedures. For cross-sectional and
cohort studies, we consider more versatile models than those
in the existing literature. For all study designs, we accommo-
date Hardy—Weinberg disequilibrium. We construct appropriate
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likelihoods for a variety of models. Under case-control sam-
pling, the likelihood pertains to the distribution of genotypes
and environmental variables conditional on the case-control sta-
tus, which involves infinite-dimensional nuisance parameters if
environmental variables are continuous. In cohort studies, it is
desirable to not parameterize the distribution of time to dis-
ease, so that the likelihood also involves infinite-dimensional
parameters. The presence of infinite-dimensional parameters
entails considerable theoretical and computational challenges.
We establish the theoretical properties of the maximum like-
lihood estimators (MLEs) by appealing to modern asymptotic
techniques, and develop efficient and stable algorithms to im-
plement the corresponding inference procedures. We assess the
performance of the proposed methods through simulation stud-
ies, and provide an application to a major genetic study of type 2
diabetes mellitus.

2. INFERENCE PROCEDURES
2.1 Preliminaries

We consider SNP-based association studies of unrelated
individuals. Suppose that each individual is genotyped at M
biallelic SNPs within a candidate gene. At each SNP site, we in-
dicate the two possible alleles by the values 0 and 1. Thus each
haplotype 4 is a unique sequence of M numbers from {0, 1}.
The total number of possible haplotypes is K = 2M; the ac-
tual number of haplotypes consistent with the data is usually
much smaller. For k =1, ..., K, let h; denote the kth possi-
ble haplotype. Figure 1 shows the eight possible haplotypes for
three SNPs.

Our human chromosomes come in pairs, one member of
each pair inherited from our mother and the other member
inherited from our father. These pairs are called homologous
chromosomes. Thus each individual has a pair of homologous
haplotypes that may or may not be identical. Routine genotyp-
ing procedures cannot separate the two homologous chromo-
somes, so only the (unphased) genotypes (i.e., the combinations
of the two homologous haplotypes) are directly observable. For
each individual, the multi-SNP genotype is an ordered sequence
of M numbers from {0, 1, 2}.

Let H and G denote the pair of haplotypes and the geno-
type for an individual. We write H = (hg, k) if the individual’s
haplotypes are hi and hj, in which case G = hy + h;. The or-
dering of the two homologous haplotypes within an individ-
ual is considered arbitrary. By allowing genotypes to include
missing SNP information, we may assume that G is known for
each individual. Given G, the value of H is unknown if the in-
dividual is heterozygous at more than one SNP or if any SNP
genotype is missing. For the case of M = 3 shown in Figure 1,
if G=(0,2,1), then H = (h3, h4), and if G = (0, 1, 1), then
H = (hy, hg) or H= (hy, h3).

0 1 0 0 1 1
h3: h4 _—t
1 1 0 1 1 1
S T—— hg: o

Figure 1. Possible Haplotype Configurations With Three SNPs.
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The goal of the association studies is to relate the pair of
haplotypes to disease phenotypes or traits. The simplest pheno-
type is the binary indicator for the disease status, which takes
the value 1 if the individual is diseased and O otherwise. The
diseased individuals may be further classified into several cat-
egories corresponding to different types of disease or varying
degrees of disease severity. If the age of onset is likely to be
genetically mediated, then it is desirable to use the age of onset
as the phenotype. One may also be interested in disease-related
traits, such as blood pressure.

The data on the disease phenotype may be gathered in various
ways. The simplest approach is to obtain a random sample from
the target population and measure the phenotype of interest on
every individual in the sample. Such studies are referred to as
cross-sectional studies, which are feasible if the disease is rela-
tively frequent or if one is interested only in some readily mea-
sured traits that are related to the disease. If one is interested in
the age at the onset of a disease, however, then it is necessary to
follow a cohort of individuals forward in time, in which case the
phenotype (i.e., time to disease occurrence) may be censored.
When the disease is relatively rare, it is more cost-effective to
use the case-control design, which collects data retrospectively
on a sample of diseased individuals and on a separate sample of
disease-free individuals. It is often desirable to collect data on
environmental variables or covariates so as to investigate gene—
environment interactions.

Let Y be the phenotype of interest, and let X be the covari-
ates. For cross-sectional and case-control studies, the associa-
tion between Y and (X, H) is characterized by the conditional
density of Y =y given H = (h, h;) and X = x, denoted by
Py g£ (yIX, (hg, hy)), where a denotes the intercept(s), 8 de-
notes the regression effects, and & denotes the nuisance para-
meters (e.g., variance and overdispersion parameters). There
is considerable flexibility in specifying the regression relation-
ship. Suppose that 4* is the target haplotype of interest and
that there are no covariates. Then a linear predictor in the
form of o« + BI(hy = h; = h*) pertains to a recessive model,
o+ B{I(hy = h*) + I(hy = h*) — I(hy = hy = h*)} pertains to a
dominant model, « + B{I(hx = h™) + I(h; = h™)} pertains to an
additive model, and o + 81 {I(hy = h*) +1(h; = h*)} + Bol (hy =
h; = h*) pertains to a codominant model, where I(-) is the in-
dicator function. Clearly, the codominant model contains the
other three models as special cases. A codominant model with
gene—environment interactions has the following linear predic-
tor:

o + Bi{l(h = h*) + I(hy = h*)} + Bl (hy = hy = h*)
+ BIx+ BI{I (e = 1) + I(ly = h*))x
+ BLI(hy = hy = h*)x. (1)

Additional terms may be included so as to examine the effects
of several haplotype configurations or to investigate the joint
effects of multiple candidate genes.

Although we are interested in the effects of H and X on Y,
we observe G instead of H. As mentioned earlier, G is the
summation of the paired sequences in H. Thus we have a
regression problem with missing data in which the primary
explanatory variable pertains to two ordered sequences of num-
bers from {0, 1}, but only the summation of the two sequences
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is observed. We assume that X is independent of H conditional
on G and that (1,X7) is linearly independent with positive

probability.
Write 7y = P{H = (h, hy)} and mp = P(h = ), k, 1 =
1,..., K. As we demonstrate in this article, it is sometimes pos-

sible to make inference about haplotype effects without impos-
ing any structures on {ry;}, although estimating {74} and testing
for no haplotype effects require some restrictions on {my}.
Under Hardy—Weinberg equilibrium,

Ty = T, kl=1,...,K. 2)

We consider two specific forms of departure from Hardy—
Weinberg equilibrium,

7 = (1 — p)mm + S pmy 3)

and

(I = p+dup)mim
L=p+pX i}

Tkl “4)

where 0 <, <1, Zle =1, 6 =1, and 5y =0 (k # ]).
In (3), p is called the inbreeding coefficient or fixation index
(Weir 1996, p. 93) and corresponds to Cohen’s (1960) kappa
measure of agreement. Equation (4) creates disequilibrium by
giving different fitness values to the homozygous and heterozy-
gous pairs (Niu et al. 2002). The denominator is a normalizing
constant. Both (3) and (4) reduce to (2) if p = 0. Excess ho-
mozygosity (i.e., i > rr,?, k=1,...,K) arises when p > 0,
and excess heterozygosity (i.e., mxx < nkz, k=1,...,K) arises
when p < 0. Recently, Satten and Epstein (2004) considered (3)
for the control population under the case-control design. We
abuse the notation slightly in that the {m}} in (4) do not pertain
to the marginal distribution of H unless p = 0.

Let / denote a haplotype that differs from 4 at only one SNP.
Write Vyf(u,v) = df(u, v)/0u. The following lemma states
that under (3) or (4), {mx} and p are identifiable from the data
on G, and the data on G provide positive information about
these parameters.

Lemma 1. Assume that either (3) or (4) holds. The para-
meters {mx} and p are uniquely determined by the distribution
of G. For nondegenerate distribution {7y}, if there exist a con-
stant o and a vector v = (vq, ..., vk)T such that Zle ve=0
and uV,logP(G=g) + Z,’le VeV, logP(G=g) =0 for g =
2h, then =0 and v =0.

In the sequel, G denotes the set of all possible genotypes and
S(G) denotes the set of haplotype pairs that are consistent with
genotype G. We suppose that ;. > O forallk =1, ..., K, where
K is now interpreted as the total number of haplotypes that exist
in the population. For any parameter 6, we use ¢ to denote its
true value if the distinction is necessary. We assume that the true
value of any Euclidean parameter 6 belongs to the interior of a
known compact set within the domain of . Proofs of Lemma 1
and all of the theorems are provided in the Appendix.
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2.2 Cross-Sectional Studies

There is a random sample of » individuals from the under-
lying population. The observable data consist of (Y;, X, G;),
i=1,...,n. The trait Y can be discrete or continuous, uni-
variate or multivariate. As stated in Section 2.1, the conditional
density of Y given X and H is given by Py g ¢(Y|X, H). For
a univariate trait, this regression model may take the form of a
generalized linear model (McCullagh and Nelder 1989) with
the linear predictor given in (1). If the trait is measured re-
peatedly in a longitudinal study, then generalized linear mixed
models (Diggle, Heagerty, Liang, and Zeger 2002, chap. 9)
may be used. The following conditions are required for esti-
mating (&, B8, &).

Condition 1. If Py g ¢ (YIX,H) = P&,E,E(WX’ H) for any
H = (he,hy) and H = (b, hy), k= 1,...,K, then « = &,
B=pB,and§ =§.

Condition 2. If there exists a constant vector v such that
vI'Vy g elogPy g e(YIX,H) =0 for H= (hg, ht) and H =
(hi, hy), then v = 0.

Remark 1. Condition 1 ensures that the parameters of in-
terest are identifiable from the genotype data. The linear
independence of the score function stated in Condition 2 en-
sures nonsingularity of the information matrix. The reason for
considering H = (h, hy) and H = (h, Zk) is that these haplo-
type pairs can be inferred with certainty because of the unique
decompositions of the corresponding genotypes g = 2h; and
g=h+ T All of the commonly used regression models, par-
ticularly generalized linear (mixed) models with linear predic-
tors in the form of (1), satisfy Conditions 1 and 2.

We show in Section A.2.1 that it is possible to estimate
the regression parameters without imposing any structure on
the joint distribution of H. But this estimation requires knowl-
edge of whether or not the dominant effects exist. Specifi-
cally, if there are no dominant effects, then only (e, 8, &) and
P(G = g) are identifiable; otherwise, («, 8, &), P(G = g), and
P(H = (h*, g — h*)) are identifiable. If either (3) or (4) holds,
then it follows from Lemma 1 and Condition 1 that all of the pa-
rameters are identifiable regardless of the genetic mechanism.
Denote the joint distribution of H by P, (H = (h, h;)), where
y consists of the identifiable parameters in the distribution of H.
Under (3) or (4), ¥ = (p, 1, ..., ). When the distribution
of H is unspecified, y pertains to the aspects of the distribution
of H that are identifiable.

Write = («, B, y,&). The likelihood for # based on the
cross-sectional data is proportional to

n
Ly@®) =[] [ [me(Yi, Xi; 6))/€=, 5)
i=1geG
where
mg(y.x:0)= Y Pyps(yIX. (. 1)) Py (i ).

(hi,h))eS(g)

The MLE @ can be obtained by maximizing (5) via the
Newton—Raphson algorithm or an optimization algorithm. It
is generally more efficient to use the expectation—-maximization
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(EM) algorithm (Dempster, Laird, and Rubin 1977), especially
when the distribution of H satisfies (3) with p > 0; see Sec-
tion A.2.2 for details.

By the classical likelihood theory, we can show that 8 is con-
sistent, asymptotically normal, and asymptotically efficient un-
der Conditions 1 and 2 and the following condition.

Condition 3. If there exists a constant vector v such that
vT'Vylogm, (Y, X; 0p) =0, then v = 0.

Remark 2. Condition 3 ensures the nonsingularity of the in-
formation matrix. This condition can be easily verified when the
joint distribution of H is unspecified and is implied by Lemma 1
and Condition 2 when the distribution satisfies (3) or (4).

2.3 Case-Control Studies With Known Population Totals

We consider case-control data supplemented by information
on population totals (Scott and Wild 1997). There is a finite
population of N individuals that is considered a random sam-
ple from the joint distribution of (Y, X, H), where Y is a cat-
egorical response variable. All that is known about this finite
population is the total number of individuals in each category
of Y =y. A sample of size n stratified on the disease status is
drawn from the finite population, and the values of X and G
are recorded for each sampled individual. The supplementary
information on population totals is often available from hospi-
tal records, cancer registries, and official statistics. If a case-
control sample is drawn from a cohort study, then the cohort
serves as the finite population. The observable data consist of
(Yi, Ri, RiX;, R;G;),i = 1,...,N, where R; indicates, by the
values 1 versus 0, whether or not the ith individual in the fi-
nite population is selected into the case-control sample.

The association between Y and (X, H) is characterized by
Py g, (YIX, H), where &, 8, and & pertain to the intercept(s),
regression effects, and overdispersion parameters (McCullagh
and Nelder 1989). In the case of a binary response variable, im-
portant examples of Py g ¢ (Y|X, H) include the logistic, probit,
and complementary log—log regression models. When there are
more than two categories, examples include the proportional
odds, multivariate probit, and multivariate logistic regression
models. Because the data associated with R; = 1 yield the same
form of likelihood as that of a cross-sectional study and the
data associated R; = 0 yield a missing-data likelihood, all of
the identifiability results stated in Section 2.2 apply to the cur-
rent setting. We again write § = («, 8, &, y), where y consists
of the identifiable parameters in the distribution of H.

Let Fg(-) be the cumulative distribution function of X given
G = g, and let fy(x) be the density of Fy(x) with respect
to a dominating measure p(x). Note that F,(-) is infinite-
dimensional if X has continuous components. The joint density
of (Y =y,G=g,X=x) is mg(y,x;0)f,(x). The likelihood
concerning 6 and {F,} takes the form

N %
L0, {F,}) = l_[ |:l_[ {mg (Y, X5 O)fg(Xl.)}I(Gi—g)]

i=1"-geG

1—R;
x [Z/mg(y,-,x; O)ng(x)] . (6

geg
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Unlike the likelihood for the cross-sectional design given in (5),
the density functions of X given G cannot be factored out of
the likelihood given in (6) and thus cannot be omitted from the
likelihood. R

We maximize (6) to obtain the MLEs 6 and {fg(-)}. The lat-
ter is an empirical function with point masses at the observed X;
such that G; = g and R; = 1. The maximization can be car-
ried out via the Newton—Raphson, profile-likelihood, or large-
scale optimization methods. An alternative way to calculate the
MLEs is through the EM algorithm described in Section A.3.1.

We impose the following regularity condition, and then state
the asymptotic results in Theorem 1.

Condition 4. For any g € G, f,(x) is positive in its support
and continuously differentiable with respect to a suitable mea-
sure.

Theorem 1. Under Conditions 1—4 0 and {F (-)} are con-
sistent in that |0 — 00| + supy , IF (x) — Fo(x)| — 0 almost
surely. In addition, n!/ 2(0 0o) converges in distribution to a
mean 0 normal random vector whose covariance matrix attains
the semiparametric efficiency bound.

Let pl,,(9) be the profile log-likelihood for @, that is, p/,,(6) =
max(r,} ylog L,(0, {Fy }) Then the (s, #)th element of the inverse
covariance matrix of @ can be estimated by —6_2{ ply (0
€n€s + €n€r) — Pln(o + €n€5 — €,€;) — pln(0 — €n€s + €,€;) +
ply (0)} where €, is a constant of the order n~ /2 and e, and e,
are the sth and rth canonical vectors. The function pl,,(@) can be
calculated via the EM algorithm by holding @ constant in both
the E-step and the M-step.

Remark 3. If N is much larger than n or if the population
frequencies rather than the totals are known, then we max-
imize [T, [T,egime(Yi, Xis 0)f; (X))} (9=9 subject to the
constraints that }_, g [ mg(y,x; 0)dFg(x) = py, where p, is
the population frequency of ¥ = y. The resultant estimator of 6
is consistent, asymptotically normal, and asymptotically effi-
cient. The results in this section can be extended straightfor-
wardly to accommodate stratifications on covariates.

2.4 Case-Control Studies With Unknown
Population Totals

We consider the classical case-control design, which mea-
sures X and G on n; cases (Y = 1) and ng controls (Y = 0)
and requires no knowledge about the finite population. With
the notation introduced in the previous section, the likelihood
contribution from one individual takes the form

ngg{mg(y, X; 0)fg (X) }I(G:g)
> eeg S mg (v, X;0) dFg(x)

where we use y instead of Y to emphasize that y is not random.
Define

RL(O, {F¢}) = . (D

mg (0, X; 0)fy (X)
[ mg(0,x; 0)dF(x)’
[ mg(0,x; 0) dF,(x)
Z;egfmg(o,x; 0)dFz(x)’

=

qg =

Clearly, f; (x) is the conditional density of X given G = g and
Y =0, and ¢, is the conditional probability of G = g given
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Y =0. Let gp and x¢ be some specific values of G and X. Write
F;: x) = fg‘f; (s) du(s). We can express (7) as

[Teegn(y, X, g; 0)f; (x)gg} =¥
deg ‘Ig{f n(y,x,g;0) ng;(X)} ,

RL(O.{F{}. {q) =

where

mg(y, X; 8)myg, (0, Xo; 0)

mg (0, X; @)mg, (v, Xo; 0)

We call n the generalized odds ratio (Liang and Qin 2000),

which reduces to the ordinary odds ratio when S(g) is a sin-
gleton.

n(y.x,8:0) =

Remark 4. The parameter g, is a functional of f; and @ be-
cause [mg(0,X; 0)dFy(x) = {fmg_l(O,x; 0) dFZ;(x)}_l. This
constraint makes it very difficult to study the identifiability of
the parameters. Thus we treat g, as a free parameter in our de-
velopment.

For traditional case-control data, the odds ratio is identifiable
(whereas the intercept is not), and its MLE can be obtained
by maximizing the prospective likelihood (Prentice and Pyke
1979). Similar results hold when the exposure is measured with
error (Roeder, Carroll, and Lindsay 1996); however, the distri-
bution of the measurement error needs to be estimated from a
validation set or an external source. With unphased genotype
data, identifiability is much more delicate. We show in Sec-
tion A.4.1 that the components of @ that are identifiable from
the retrospective likelihood are exactly those that are identi-
fiable from the generalized odds ratio. Thus we assume that
the generalized odds ratio depends only on a set of identifi-
able parameters, still denoted by 6; otherwise, the inference is
not tractable. For the logistic link function with linear predic-
tor (1), we show in Section A.4.2 that if there are no dominant
effects, then @ consists only of B; if there are no covariate ef-
fects but there exists a dominant main effect, then B is identi-
fiable and P(H = (h*, g — h*))/P(G = g) is identifiable up to
a scalar constant; and if the dominant effect depends on a con-
tinuous covariate or if the dominant main effect and the main
effect of a continuous covariate are nonzero, then @ consists
of a, B, and P(H = (h*,g — h*))/P(G = g). For the probit
and complementary log—log link functions, we show in Sec-
tion A.4.3 that if there are dominant effects and at least one
continuous covariate has an effect, then 6 consists of «, 8, and
PH=(h*,g—h"))/P(G=g).

We maximize the product of (8) over the n = n| 4 ng individ-
uals in the case-control sample to produce the MLEs 6, {fg, O},
and {g,}. Although tl’/l\e {F;[(-)} are high-dimensional, we show
in Section A.4.4 that @ can be obtained by profiling a likelihood
function over a scalar nuisance parameter.

To state the asymptotic properties of the MLEs, we impose
the following conditions.

Condition 5. If there exists a vector v such that v/ Vy log (1,
X, g; @) is a constant with probability 1, then v =0.

Condition 6. The function ng is positive in its support and
continuously differentiable.

Condition 7. The fraction n;/n — g € (0, 1).
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Remark 5. Condition 5 implies nonsingularity of the infor-
mation matrix for 6y and can be shown to hold for the logistic,
probit, and complementary log—log link functions. Condition 7
ensures that there are both cases and controls in the sample.

Theorem 2. Under Conditions 5-7, [§ — 8| + sup, [q, —
gl + supy , |/15; (x) — Fg (x)| — 0 almost surely. In addition,
n/2(0 — 00) converges in distribution to a normal random vec-

tor whose covariance matrix attains the semiparametric effi-
ciency bound.

In most case-control studies, the disease is (relatively) rare.
When the disease is rare, considerable simplicity arises be-
cause of the following approximation for the logistic regression
model:

Pop(YIX, H) ~explY (e + BT 2(X, H))},

where Z(X, H) is a specific function of X and H. We assume
that either (3) or (4) holds. The likelihood based on (X;, G;, y;),
i=1,...,n, can be approximated by

L0, (Fg))

n T z(x. _ .
. (ngeg[fg(xi)Z(hk,hl)eS(g)eﬂ Z(Xl.hk,hl)Py(hk’hl)]l(G,—g))}z
- l I T Z(X,hy .

1 Yeeq [y Xy pese BT ECND P (e, hy) dF g (x)

I(Gi=g)71—vi
Py (A, hl)} } .

©))

X [H{fgog-)

g€g

2

(hie,h)eS(g)

We impose the following condition.

Condition 8. If o + BT Z(X, H) =& + BT 2(X, H) for H =
(hy, hy) and H = (hy, hy), then o = and B = B.

This condition is similar to Condition 1 stated in Section 2.2,
and it holds for the codominant model. Under this condition,
it follows from Lemma 1 that no two sets of parameters can
give the same likelihood with probability 1. Thus the maximizer
of (9), denotedfl\)y (5, {/Fg}), is locally unique. We show in Sec-
tion A.4.5 that @ can be easily obtained by profiling over a small
number of parameters.

To derive the asymptotic properties, we provide a mathemat-
ical definition of rare disease.

Condition 9. For i = 1,...,n, the conditional distribu-
tion of Y; given (X;, H;) satisfies that P(Y; = 1|X;, H;) =
anexp{Bh Z(Xi, H)}/I1 + ayexp{B Z(Xi, H)}], where a, =
o(nfl/z).

Theorem 3. Under Conditions 6-9, |§—oo| +supy , |fg (x)—
Fy(x)| —Pn 0, where P, is the probability measure given by
Condition 9. Furthermore, n'/2(0 — 6¢) converges in distri-
bution to a normal random vector whose covariance matrix
achieves the semiparametric efficiency bound.

2.5 Cohort Studies

In a cohort study, Y represents the time to disease occur-
rence, which is subject to right-censorship by C. The data con-
sist of (¥;, A;, X;, Gy),i=1,...,n, where Y; = min(Y;, C;) and
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A, =1(Y; < C;). We relate Y; to (X;, H;) through a class of
semiparametric linear transformation models,

(V) =-B"ZX;, Hy) + e, (10)

i=1,...,n,

where I' is an unknown increasing function, Z(X,H) is a
known function of X and H, and the ¢;’s are independent er-
rors with known distribution function F. We may rewrite (10)
as

PY; <t|X;, Hy) = Q(A(t)eﬂTZ(X,',H,»))’

where A(7) = eI’ and Q(x) = F(logx) (x > 0). The choices
of the extreme-value and standard logistic distributions for F, or
equivalently, Q(x) = 1 —e*and Q(x) = 1 — (1 +x)~!, yield the
proportional hazards model and the proportional odds model
(Pettitt 1984).

We impose Condition 8. Under this condition, § and A(-)
are identifiable from the observable data. The identifiability of
the distribution of H is the same here as in the case of cross-
sectional studies. Under (3) or (4) and Condition 8, all of the
parameters, including 8, A(:), and y, are identifiable. This is
shown in Section A.5.1.

The following assumption on censoring is required in con-
structing the likelihood.

Condition 10. Conditional on X and G, the censoring time C
is independent of Y and H.

Let @ = (B, y). The likelihood concerning @ and A takes the
form

L,(0, A)

N ﬁ Z {A(Y’i)eﬂTZ(Xi*(hk,hz))

i=1 "=y, h)eS(Gy)

x QA (Ti)eP 2y &
x {1 — Q(A(Fpef ZXKi w1 =4ip hl)}.

1)

Here and in the sequel, f (x) = df (x)/dx and f(x) = d*f(x)/
dx2. Like (6), (8), and (9), this likelihood involves infinite-
dimensional parameters. If A is restricted to be absolutely con-
tinuous, then, as in the case of density estimation, there is no
maximizer of this likelihood. Thus we relax A to be right-
continuous and replace A(Y;) in (11) by the jump size of A
at IN/,-. By the arguments of Zeng, Lin, and Lin (2005), the resul-
tant MLE, denoted by (5, K), exists, and Ais a step function
with jumps only at the observed Y; for which A; = 1. The max-
imization can be carried out through an optimization algorithm.
Furthermore, the covariance matrix of 9 can be estimated by the
profile likelihood method, as discussed by Zeng et al. (2005).

Lin (2004) considered the special case of the proportional
hazards model under condition (2) and provided an EM algo-
rithm for obtaining the MLEs. We can modify that algorithm to
accommodate Hardy—Weinberg disequilibrium along the lines
of Section A.2.2. In addition, the EM algorithm can be used to
evaluate the profile likelihood.

We assume the following regularity conditions for the as-
ymptotic results.
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Condition 11. There exists some positive constant §y such
that P(C; > 71X, Gi) = P(C; = t|X|, G;) = §p almost surely,

where t corresponds to the end of the study.

Condition 12. The true value Ag(?) of A(?) is a strictly in-
creasing function in [0, 7] and is continuously differentiable. In
addition, Ag(0) =0, Ag(t) < 00, and Ag(0) > 0.

Theorem 4. Under Conditions 8 and 10-12, n'/2(8 — 6, A —
Ap) converges weakly to a Gaussian process in R4 x 1°°(]0, 7)),
where d is the dimension of 0, and [°°([0, ]) is the space of
all bounded functions on [0, 7] equipped with the supremum
norm. Furthermore, @ is asymptotically efficient.

3. SIMULATION STUDIES

We used Monte Carlo simulation to evaluate the proposed
methods in realistic settings. We considered the five SNPs on
chromosome 22 from the Finland-United States Investigation
of NIDDM Genetics (FUSION) Study described in the next
section. We obtained the m;’s from the frequencies shown in
Table 1 by assuming a 7% disease rate, and generated haplo-
types under (3) with p = .05. The Rﬁ in Table 1 is the mea-
sure of haplotype certainty of Stram et al. (2003). We focused
on h* =(0,1,1,0,0) and considered case-control and cohort
studies.

For the cohort studies, we generated ages of onset from the
proportional hazards model,

Mtlx, (b, hp)} = 2texp[ i {I (e = h*) + I(h; = h*)} + pax
+ B3{I (e = h*) + I(hy = h*)}x],

where X is a Bernoulli variable with P(X = 1) = .2 that is in-
dependent of H. We generated the censoring times from the
uniform (0, t) distribution, where t was chosen to yield ap-
proximately 250, 500, and 1,000 cases under n = 5,000. We let
B1 = f2 = .25 and varied B3 from —.5 to .5.

As shown in Table 2, the MLE is virtually unbiased, the like-
lihood ratio test has proper type I error, and the confidence in-
terval has reasonable coverage. Additional simulation studies
revealed that the proposed methods also perform well for mak-
ing inference about other parameters and under other genetic
models.

Table 1. Observed Haplotype Frequencies in the FUSION Study

Frequencies
Haplotype Controls Cases Rﬁ
00011 .0042 .0066 .388
00100 .0035 .0034 .336
00110 .0018 .0007 377
01011 1292 1344 592
01100 .2514 .3183 .738
01101 .0012 <1074 450
01110 <1074 .0045 499
01111 .0019 <1074 .325
10000 .0136 0114 456
10010 <10~* .0012 .500
10011 .3573 .2883 727
10100 .0521 .0597 402
10110 .0317 .0318 .554
11011 1392 .1290 560
11100 .0109 .0092 .266
11110 <1074 .0014 <1074
11111 .0020 <1074 .338
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Table 2. Simulation Results for the Haplotype—Environment
Interactions in Cohort Studies

Bs Cases Bias SE cP Power
0 250 —.010 .232 .949 .051
500 —.005 157 .953 .047
1,000 —.003 114 .954 .046
-.25 250 —.014 .256 .950 .190
500 —.008 72 .949 .334
1,000 —.004 122 .952 .554
-5 250 —.022 .281 .950 .505
500 —.011 .190 .950 .806
1,000 —.006 132 .952 976
.25 250 —.007 .216 .947 .207
500 —.002 146 .953 .395
1,000 —.001 .109 .954 .614
.5 250 —.003 .204 .943 .693
500 —.001 .140 .951 .940
1,000 —.001 105 .952 .998

NOTE: Bias and SE are the bias and standard error of B. CP is the coverage probability of the
95% confidence interval for S5. Power pertains to the .05-level likelihood ratio test of Hy: B3 = 0.
Each entry is based on 5,000 replicates.

For the case-control studies, we used the same distributions
of H and X and considered the same #* as in the cohort stud-
ies. We generated disease incidence from the logistic regression
model,

logit P{Y = 1|x, (I, hy)}
=a+ pi{I(h =h*) +1(hy = h*)}

+ Box + Ball(h = h*) +1(hy = h")}x.  (12)

For making inference on B1, we set 8, = B3 = .25 and var-
ied B; from —.5 to .5; for making inference on B3, we set
B1 = B2 = .25 and varied B3 from —.5 to .5. We chose o« = —3
or —4, yielding disease rates between 1.6% and 7%. We let
n1 = np = 500 or 1,000. We considered the situations of known
and unknown population totals, with N being 15 and 30 times
of n under « = —3 and —4. For known population totals, we
used the EM algorithm described in Section A.3.1 and eval-
uated the inference procedures based on the likelihood ratio
statistic. For unknown population totals, we used the profile-
likelihood method for rare diseases described in Section A.4.5
and set the 77 less than 2/n to 0 to improve numerical stability.
The results for B and B3 are displayed in Tables 3 and 4.

For known population totals, the proposed estimators are vir-
tually unbiased, and the likelihood ratio statistics yield proper
tests and confidence intervals. For unknown population totals,
31 has little bias, especially for large n, whereas ,4/3\3 tends to
be slightly biased downward; the variance estimators are fairly
accurate, and the corresponding confidence intervals have rea-
sonable coverage probabilities except for {o = —3, B3 = .5}.
The method with known population totals yields slightly higher
power than the method with unknown population totals.

All the aforementioned results pertain to haplotype 01100,
which has a relatively high frequency and a large value of R?;
the covariate is binary, and p is .05, which is relatively large.
Additional simulation studies showed that the foregoing con-
clusions continue to hold for other haplotypes, other values
of p, and continuous covariates. Table 5 reports some results
for haplotype 10100, which has a frequency of about 5% and
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Table 3. Simulation Results for the Main Effects of the Haplotype in Case-Control Studies

Known totals

Unknown totals

ny=ng o B1 Bias SE CP Power Bias SE SEE CcP Power
500 -3 -5 —.003 117 .952 .987 .019 121 124 .951 979
-.25 —.002 .109 .954 .587 .014 112 117 .960 .525
0 —.001 104 .951 .049 .009 109 112 .955 .045
.25 —.001 .102 .950 .641 .002 .105 .108 .961 .646
5 .000 .099 .948 .996 —.005 .103 .106 .958 .998
—4 -5 .001 112 .954 .987 .022 119 124 .951 977
-.25 —.002 104 .955 574 .013 114 117 .952 .529
0 —.002 .100 .953 .047 .004 .109 112 .953 .047
.25 —.001 .095 .956 .636 —.003 .103 .108 .959 .640
5 —.000 .094 .950 .999 —.009 102 105 .956 .997
1,000 -3 -5 —.003 .082 .953 1.00 .005 .087 .087 .949 1.00
-.25 —.002 .076 .952 .874 .005 .081 .082 .948 .853
0 —.001 .073 .951 .049 .005 .077 .077 .954 .046
.25 —.001 .071 .953 .898 .004 .075 .076 .948 .920
5 —.001 .070 .953 1.00 .003 .075 .075 .946 1.00
—4 -5 .000 .079 .952 1.00 .005 .087 .088 .947 1.00
-.25 —.000 .074 .959 .867 .005 .081 .083 .954 .847
0 —.001 .070 .955 .045 .002 .079 .079 .949 .051
.25 —.001 .067 .956 .904 .000 .074 .076 .955 .909
5 —.001 .066 .956 1.00 —.002 .073 .074 .954 1.00

NOTE: Bias and SE are the bias and standard error of 31 SEE is the mean of the standard error estimator for 31 CP is the coverage probability of the
95% confidence interval for ;. Power pertains to the .05-level test of Hy : 81 = 0. Each entry is based on 5,000 replicates.

an Rfl of .4. We generated disease incidence from the logistic
regression model

logit P{Y = 11Xy, X2, (hk, hi)}
=a + Bl (hx = h*) + I(hy = h*)}
+ B X1 4 B, X + Buo, {I(hi = h*) + I(hy = h*)} X2,

where h* = (10100), X; is Bernoulli with .2 success probabil-
ity, and X> is uniform(0, 1). We set p = .01, « = —3.7, 8, =0,
and By, = Br, = —PBxn = .5, yielding an overall disease rate
of 7%. We assumed unknown population totals and used the

profile-likelihood method for rare diseases described in Sec-
tion A.4.5. The method performed remarkably well.

4. APPLICATION TO THE FUSION STUDY

Type 2 diabetes mellitus or non—insulin-dependent diabetes
mellitus is a complex disease characterized by resistance of pe-
ripheral tissues to insulin and a deficiency of insulin secretion.
Approximately 7% of adults in developed countries suffer from
the disease. The FUSION study is a major effort to map and
clone genetic variants that predispose to type 2 diabetes (Valle
et al. 1998). We consider a subset of data from this study.

Table 4. Simulation Results for the Haplotype—Environment Interactions in Case-Control Studies

Known totals

Unknown totals

ny=np o Bs Bias SE CP Power Bias SE SEE CP Power
500 -3 -5 —.008 .205 .949 .729 .030 .187 195 .953 .692
-.25 —.002 .186 .949 .271 .016 .169 176 .961 244
0 —.001 173 .946 .054 —.006 .155 .162 .963 .037
.25 .002 165 .949 .334 —.038 144 151 .958 .287
5 .006 161 .947 .885 —.088 .138 143 915 .831
—4 -5 —.009 .198 .950 .763 .012 194 195 .950 .720
-.25 —.005 181 .949 .309 .006 172 176 .953 .264
0 —.002 .168 .945 .055 —.007 .156 161 .956 .044
25 —.001 157 .944 .370 —.022 146 149 .948 .333
5 .001 .148 .945 .926 —.047 .136 141 .945 .904
1,000 -3 -5 —.004 147 .943 .953 .027 134 136 .950 .953
—-.25 —.003 133 .946 493 .013 122 123 .949 477
0 —.001 123 .951 .049 —.005 114 113 .948 .052
.25 .000 119 .945 .580 —.034 107 .106 .934 .535
5 .002 117 .947 .994 —.080 .102 .101 .870 .986
—4 -5 —.005 .140 .945 .965 .010 137 .136 .949 .965
-.25 —.002 .128 .945 .529 .005 124 123 .951 .505
0 —.001 119 .946 .054 —.004 113 113 .947 .053
.25 —.000 .110 .947 .633 —.016 .104 .105 .952 .601
5 .002 105 .949 .998 —.037 .099 .099 .937 .995

NOTE: Bias and SE are the bias and standard error of /?3. SEE is the mean of the standard error estimator for 33. CP is the coverage probability of the
95% confidence interval for 8;. Power pertains to the .05-level test of Hy : 83 = 0. Each entry is based on 5,000 replicates.
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Table 5. Simulation Results for Haplotype 10100 in
Case-Control Studies

ny=ng Parameter Truevalue Bias SE SEE CP Power
500 Bh 0 —.030 .400 .401 .957 .043
Bx, 5 .002 .151 .152 .951 917
X 5 .001 228 .230 .953 .584
,thz -5 .015 .641 .644 956 .118
1,000 Bn 0 —-.017 275 277 .953 .047
Bxy 5 .002 .107 .107 .954 .997
X0 5 .000 .162 .161 .950 .871
Brsy -5 012 441 443 950 .198

NOTE: Bias and SE are the bias and standard error of the parameter estimator. SEE is the
mean of the standard error estimator. CP is the coverage probability of the 95% confidence
interval. Power pertains to the .05-level test of zero parameter value. Each entry is based on
5,000 replicates.

A total of 796 cases and 415 controls were genotyped at
5 SNPs in a putative susceptibility region on chromosome 22,
with 131 cases and 82 controls having missing genotype infor-
mation for at least one SNP. If G; is missing, then the set S(G;)
is enlarged accordingly in the analysis. Table 1 displays the es-
timated haplotype frequencies under (3) separated by the cases
and controls, along with the values of Ri (Stram et al. 2003) for
the controls. We estimated p at .000 for controls and .002 for
cases.

We use the method based on (9) to estimate the effects of
the haplotypes whose observed frequencies in the controls are
greater than 2%. As shown in Table 6, the results are signif-
icant for the two most common haplotypes; haplotype 01100
increases the risk of disease, whereas haplotype 10011 is pro-
tective against diabetes. Epstein and Satten (2003) also reported
the estimates for these two haplotypes, which agree with our
numbers. Although they did not report standard error estimates,
their confidence intervals are similar to those based on Table 6.
The results under the codominant model as well as the calcula-
tions of the Akaike information criterion (AIC) (Akaike 1985)
suggest that the additive model fits the data the best for both
haplotypes 01100 and 10011.

The FUSION investigators are currently exploring gene—
environment interactions on chromosome 22, so the covariate
information is confidential at this stage. To illustrate our method
for detecting gene—environment interactions, we artificially cre-
ated a binary covariate X by setting X = 1 for the first 600 in-
dividuals in the dataset. Under the additive genetic model for
haplotype 01100, the estimate of the interaction is .043 with
an estimated standard error of .110. For further illustration, we
generated a binary covariate from the conditional distribution
of X given Y and G under model (12) with « = —3.7, 81 = .32,
and B, = .25. Based on 5,000 replicates, the power for testing
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Hy : B3 = 0is estimated at .053, .479, or .974 under 83 =0, .25,
or.5.

5. DISCUSSION

Inferring haplotype—disease associations is an interesting
and difficult statistical problem. The presence of infinite-
dimensional nuisance parameters in the likelihoods for case-
control and cohort studies entails considerable theoretical and
computational challenges. Although we have conducted a sys-
tematic and rigorous investigation, providing powerful new
methods, there remain substantial open problems. Here we dis-
cuss some directions for future research.

Case-Control Studies. It is numerically difficult to maxi-
mize (6) when N is much larger than n, and algorithms for
implementing the constrained maximization mentioned in Re-
mark 3 have yet to be developed. For case-control studies with
unknown population totals, identifiability is a thorny issue. We
have provided a simple and efficient method under the rare dis-
ease assumption, which appears to work well even when the
disease is not rare. But can we do better?

Model Selection and Model Assessment. Because our ap-
proach is built on likelihood, we can apply likelihood-based
model selection criteria, such as the AIC used in Section 4.
Lin (2004) showed that the AIC performs well for the propor-
tional hazards model. It is unclear how to apply the traditional
residual-based methods for assessing model adequacy, because
the haplotypes are not directly observable.

Other Genetic Variants. We have focused on SNPs-based
haplotypes. The proposed inference procedures are potentially
applicable to microsatellite loci and other genotype data, al-
though the identifiability of parameters needs to be verified for
each kind of genotype data.

Other Study Designs. It is sometimes desirable to use the
matched case-control design in which one or more controls are
individually matched to each case. In large cohort studies with
rare diseases, it is cost-effective to adopt the case-cohort design
or nested case-control design, so that only a subset of the cohort
members needs to be genotyped. We are currently developing
efficient inference procedures for such designs.

Population Substructure. The presence of latent population
substructure can cause bias in association studies of unrelated
individuals. There exist several statistical methods to adjust for
the effects of population substructure with the aid of genomic
markers. It should be possible to extend the proposed methods
so0 as to accommodate potential population substructure.

Table 6. Estimates of Haplotype Effects Under Various Genetic Models for the FUSION Study

Recessive Dominant Additive Codominant model
Haplotype model model model Additive Recessive
01011 327 270) —.027140) 049 135) 005(.143) .331(289)
01100 .31 6(_146) 274(_1 09) 355(‘099) 334(.1 14) .063(.167)
10011 —.206 155) —.323(112) —.320(095) —.344111) 076 183)
10100 —-1.01 9(1_020) 196(_219) 116(.213) 169(.217) —1.131(1_029)
10110 .903( 746) —.007248) 063 249) 016 254) .892( 765)
11011 —.222( 30g) —.096( 140) —.127 133 —.108 140) —.143(344)

NOTE: Standard error estimates are shown in parentheses.
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Studies of Related Individuals. This article is concerned
with studies of unrelated individuals. Many genetic studies in-
volve multiple family members or relatives. Haplotype ambigu-
ity possibly can be reduced by using the genotype information
from related individuals. Inference on haplotype effects needs
to account for the intraclass correlation.

Genotyping Error and DNA Pooling. Laboratory genotyp-
ing is prone to error. It is sometimes necessary to pool DNA
samples rather than genotyping individual samples (Wang,
Kidd, and Zhao 2003). Such data create additional complexity
in haplotype analysis (Zeng and Lin 2005).

Many SNPs. The traditional EM algorithm works well for
a small number of SNPs. When the number of SNPs is large,
the partition—ligation method of Niu et al. (2002) and Qin et al.
(2002) and other modifications potentially can be adapted to re-
duce the computational burden. However, the haplotype analy-
sis may not be very useful if the SNPs are weakly linked.

Many Haplotypes and Rare Haplotypes. The approach
taken in this article assumes that we are interested in a small
number of haplotype configurations that are relatively frequent.
If there are many haplotypes, then we are confronted with
the problem of multiple comparisons and sparse data. Schaid
(2004) discussed some possible solutions.

Large-Scale Studies. There is an increasing interest in
genome-wide association studies. With a large number of SNPs,
one possible approach is to use sliding windows of 5-10 SNPs
and test for the haplotype—disease association in each window.
Because most of the SNPs are common between adjacent win-
dows, the test statistics tend to be highly correlated, so that the
Bonferroni-type correction for multiple comparisons would be
extremely conservative. To properly adjust for multiple com-
parisons, one needs to ascertain the joint distribution of the test
statistics. This can be done by permuting the data or by evaluat-
ing the asymptotic joint normal distribution of the test statistics
(Lin 2005).

We hope that other statisticians will join us in tackling the
foregoing problems and other challenges in genetic association
studies.

APPENDIX: TECHNICAL AND
COMPUTATIONAL DETAILS

A.1 Proof of Lemma 1

We provide a proof under (3); the proof under (4) is simpler and
is omitted here. To prove the first part of the lemma, we suppose
that two sets of parameters, ({7r}, p) and ({7}, P), yield the same
distribution of G. We wish to show that these two sets are iden-
tical. Consider g =2h;. For such a choice of g, the set S(g) is a
singleton. Clearly, (1 — ,o)rrlg + o = (1 — 5)7?,,3 + pk. We de-
note this constant by cx. Then 0 < ¢ <1 for all k£, and 0 < ¢; < 1
for at least one k. Because m; > 0, we have mp = [—p + {,02 +
4er(1 — p)}l/z]/Z(l — p). Thus (1 — ,o)_1 satisfies the equation
Sl —x) + {(x — )2 +4ex} /21 =2, and (1 — p)~! satisfies the
same equation. It can be shown that the first derivative of (1 — x) +
{(c— D2+ 4epx} 1/2 is nonpositive and is strictly negative for at least
one k. Thus the foregoing equation has a unique solution for x > 1,
which implies that p = p. It follows immediately that ; = 7 for
all k. To prove the second part of the lemma, we choose g = 2k to
obtain vi{2mx (1 — p) + p} + pm (1 — m) = 0. Because ) 4 vy =0,
we have ) {umi (1 — mp)}/{2m (1 — p) + p} = 0. Therefore, =0
and v =0.
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A.2 Cross-Sectional Studies

A.2.1 Identifiability Under Arbitrary Distributions of H. Under
Condition 1, (e, B, &) is identifiable. The identifiability of the distribu-
tion of H depends on the structure of P, g ¢ . For concreteness, we con-
sider the codominant logistic regression model for a binary trait. We
divide G into three categories: G ={g€ G:g=h+horg=h+ Z},
Gr={geG—Gj:gisnot > h*},and G3 =G — G| — Gp. We derive
the expression for mg (v, X; #) when g belongs to each of the three cat-
egories.

For g € G|, S(g) = {(h,h)} or {(h ), so that mg(y,x;
0) =Pupg:s(Y=yX=xH= (h,Nh))P(H = (th)) or mg(y,X;
0) =Py pgeY =yIX=x,H=(hh)P(H = (h,h). For g € G,
Py g.e (Y =y|X=x, H = (h, hj)) does not depend on (g, h) € S(g),
so that mg(y,x;0) = Py g « (Y =y X = x, H = (hy, )))P(G = g),
where (hy, hy) € S(g). For g € G3,

exp{y(e + B1 + BIx + B %)} .
1+ exp(a + B1 + BIx+ Bix)

mg(y,Xx; 0) = 1(8)
exp{y(e + B3 %)) .
Lt explot Bln) o0

where 71(g) = 2P(H = (h*, g — h*)) and mp(g) = P(H = (g, ly):
hy + hy =g, by # h*, hy # h*).

Let @y denote the true value of 6, Py(G = g) denote the true
value of P(G = g), and noj(g) denote the true values 7j(g), j = 1,2.
We then can draw the following conclusions: (1) When Sp; =0 and
Bos =0, mg(y,x;0) =mg(y,x; 0p) if and only if « = g, B = By,
and P(G = g) = Po(G = g) for any g € G; and (2) when either Sy
or By is nonzero, mg(y,x; 0) = mg(y,X; p) if and only if o = ay,
B =By, P(G=g) =Py(G=g) for g € G| UGy, and 7;(g) = m(;(g)
for g € G3 and j = 1, 2. These conclusions hold for any generalized
linear model with the linear predictor given in (1).

A.2.2 EM Algorithm. The complete-data likelihood is propor-
tional to H?:l {Pg, g, (YilXi, H)Py (H;)}. The expectation of the log-
arithm of this function conditional on the observable data (Y;, X;, G;),
i=1,...,n,is

n

> pin®{logPy g ¢ (YilXi. (b, b)) +log Py (g, hp) ).
i=1 (h.h)€S(Gi)

where

Py, e (YilXi, (h, h)) Py (hye, hy)
> eSGr) Pa, g YilXis (e, i) Py (g, )|

Thus, in the (m + 1)st iteration of the EM algorithm, we evalu-
ate pjx;(0) at the current estimate 6™ and obtain 91 by solving
the following equations through the Newton—Raphson algorithm:

Xn: > piw(8™)

i=1 (hy,h))€S(Gi)

X Vo g.elogPy g g (YilXi, (b, hp)) =0,

Pik1(0) =

n
o> pi(8Y)Vy log Py iy, hy) = 0. (A1)

i=1 (g, h1)eS(G)

Under (3) with p > 0, the estimate of y = (p, {7x}) can be ob-
tained in a closed form rather than by solving (A.1). Let B be a
Bernoulli variable with success probability p, let Q1 be a discrete
random variable taking values in H with P(Q1 = (b, ly)) = Sk,
and let O, be another discrete random variable taking values in H
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with P(Q = (hg, hy)) = mgm;. Then H has the same distribution as

BQ1 + (1 —B)Q>. The complete-data likelihood can be represented by

n

1(Q1i=(hi,hp))Bi
H{PQ,B,E(Y”Xi’ Hi)l_[ﬂk(Ql (hie, i)
i=1 k

x T e (o= D (1= i — p)lfB,-}.
k,l

The corresponding score equations for {7} and p satisfy

me=c"! |:ZBi](Qli = (h, )

=1
n K

+ D (1= B){I(Q2i = (g, hp) +1(Qai = (B, hk))}i|
i=11=1

and p = n! Z?: 1 Bi, where ¢ is a normalizing constant such that
>k 7k = 1. Define

E{w(B;, Q1i» Q2)1Y, X;, Gi}

= > Py g (YilXi. bqy + (1 — b)q)
bq1+(1-b)q2€S(Gy)

x p(b, q1,q2)w(b, q1,q2)

Py p.& (YilXi, bgy + (1 —b)g2)

x[ )

bq1+(1-b)q2€S5(Gy)
—1
x p(b, q1, qz)] ,

where @ (B, 01, 02) = BI(Q = (ht, hy)), (1 — B)(Qy = (hy, hyp)
or B, and

bl(g1=(hi,h
pb.q1.q2) = [ [ @=Pe)
k

x l_[(nkm)(l—b)l(qzz(hk,hl))pb(1 _ p)l—b.
k,l

In the (m 4+ 1)st iteration, the estimates of 3 and p are obtained in
closed form,

1 1 -
n/Eer = ROES)) |:ZE(”’){B,-I(Q1,' = (e b))}

i=1

n K
+ 22 ZE(’”){(I — B)I(Q2; = (I, hz))}:|,

i=11=1

and p"+D = p=I 3 E()(By), where EM{w(B;, 014, 02))) is
E{o(B;, 01;, 02)|Y:. X;, G;} evaluated at @ = 8™ and "D is the

constant such that " rr]ferl) =1.

A.3 Case-Control Studies With Known Population Totals

A.3.1 EM Algorithm. This is similar to the EM algorithm for
cross-sectional studies, except that in addition to unknown H on all
individuals, X is missing for the individuals not selected into the case-
control sample and there are nonparametric components {F¢(-)}. The
complete-data likelihood is

N
[ [Pa.p.e (YilXi, HoPy () | [ife (X)) (G=2).
i=1 8
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The M-step solves the following equations for 0:
N
> I(Ri=1)E{Vy g ¢ log Py g ¢ (YilXi, Hp)| Y, Xi, Gi}

i=1
N
+ ) IR =0)E{Vy g ¢ logPy g ¢ (YilX;, H|Y;} =0,
i=1
N
D I(Ri = 1)E{Vy log Py (H)|Y;, X, Gi)
i=1
N
+ ZI(R,- =0)E{Vy logPy (H)|Y;} =0, (A2)
i=1
and also estimates Fg by an empirical function with the following point
mass at the X; for which (G; =g, R; = 1):

Fg{Xi}

N
= [Zl(xj =X;,Gj=g,Rj=1)
j=1

N
+ ) IR =0)E(IX;=X;, G} = g)IY/}}
j=1

N N -1
x |:ZI(G/ =g Rj=1)+) IR =0E(I(Gj= g>|Y,,'}} :

J=1 J=1

where the conditional expectations are evaluated at the current esti-

mates of 6 and {F} in the E-step. For a random function w (Y;, X;, H;),
the conditional expectation takes the form

>t hpeSGn Wi Xi, (i, h) Py g g (Yil X, (g, )Py (i, hy)
> ) eSGr) Pa.p.g (YilXi, (i, )Py (i, hy)
for R; =1 and

2 2

g€G xe(X;: Gi=¢g,Ri=1} (h,h))eS(g)
X Py g & (YilX, (hg, hy))
x Py (hy, hp)Fg{x}

(X ¥ X

geGxe{X;: Gi=g,Ri=1} (hy,h;))eS (g)

o (Y;, X, (h, hp)

Py g.£ (Yilx, (hy, hy))

~1
x Py (hy, hl)Fg{X}>

for R; = 0. Under (3) with p > 0, the idea described in Section A.2.2
can be applied to (A.2) to obtain a closed-form estimate of p.

A.3.2 Proof of Theorem 1. The case-control design with known
population totals is a special case of the two-phase designs studied by
Breslow, McNeney, and Wellner (2003). The likelihood given in (6)
resembles (2.3) of Breslow et al. The key difference is that the for-
mer involves several nonparametric components {Fg(-)}, whereas the
latter involves only a single nonparametric function. Despite this dif-
ference, the arguments of Breslow et al. can be used to prove Theo-
rem 1 with minor modifications. Specifically, the regularity conditions
of Breslow et al. hold under our Conditions 1-4. Thus, the consistency
of (0, {fg(~)}) follows from the results of van der Vaart and Wellner
(2001), whereas the weak convergence and asymptotic efficiency can
be established by applying the results of Murphy and van der Vaart
(2000) through a least favorable submodel, which can be constructed
as done by Breslow et al. (2003, sec. 3).
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A.4 Case-Control Studies With Unknown Population Totals

A.4.1 Equivalence Class. Suppose that two sets of parameters,
(@, {Fg,}, {gg}) and (5, {I::;,L}, {@¢)), yield the same likelihood,

RL(®, (F}}, {gg}) = RL(®, (F}), (G} (A3)

Because 1(0,x,g;0) =1, (A.3) with y = 0 implies that ng(x)qg/
Y 5eG 75 =4 g/ Ygeg T Thus f3 (%) =3 (x) and gy = g It
then follows from (A.3) that

1y, %, & 6) = C()N(y,x, g; 0), (A4)

where C(y) depends only on y. By setting x =x( and g = gg in (A.4)
and noting that n(y, xg, go; #) = 1, we conclude that C(y) = 1. Hence
the equivalence class for (6, {Fg}, {gg}) is {(5, {F;}, {gg}) :n(y,x,
g 0)=n(y.x,g:0)}.

A.4.2 Identifiability for the Logistic Link Function. Suppose that

n(y,%, 8 60) =n(y,x, g;0) (A.5)

for two sets of parameters 6 and 6. Let 8o = 0. As in Section A.2.1,
we partition G into (G, G», G3). For g € G, S(g) is a singleton, so the
generalized odds ratio reduces to the ordinary odds ratio of Y given
X and H. Thus (A.5) is equivalent to g = E under Condition 8. For
g€ Gy, P(Y =0X =x, H = (h, h)) = {1 + exp(e + BI %)}~ Thus
(A.5) holds if and only if E3 = B3. For g € G3, both 71 (g) and m(g)
are nonzero. Then (A.5) becomes

71(9) (1 4 T2 /7, (g) (1 + ¥ HV1X)) 4 V20 —¥1(®)
T1(Q)(1 4 V200 /75 () (1 4 X V1) 4 1

71 () (1 4+ 2 TV200) /75 () (1 + 2 HV1X)) 4 V20 —¥1()
B 71(9) (1 + V2% /715 () (1 4 2 H¥1 (X)) 4 |

)

(A.6)

where ¥ (xX) = 81 + ﬂ3Tx + ﬂzx and ¥y (x) = ﬁ3Tx.
Without loss of generality, assume that 0 is in the support of X. We
then have the following results:

1. B1 =0and B4 =0. Then (A.6) holds naturally.
2. B1 #0,B4 =0, and B3 = 0. Then, because the function
(A4 c¢)/(X 4+ 1) is strictly monotone in A for ¢ # 1, (A.6) yields
79 1+e¥  m(p 1+
T(g) 14 @+ my(g) 14 2 Fh1
Thus (A.6) is equivalent to

T1(8)/7a(®) _ mi(8)/ma(g)
T@/M@  m@)/m@)
3. B1 #0,B4 =0, and B3, # 0, where B3 , is the component

of B3 associated with a continuous covariate Z. For x such that
B3,:2#0, (A.6) yields

14 Hhs:z

forall g, g € G3.

1(9) _mi(g) 1+t

To(g) 14 @ TP1HB32 ~ my(g) 1 4 ¥ HBPi+BcT’

The foregoing equation holds for any z € (—00, 00) because
the functions on the two sides are analytic in z and z is con-
tinuous. Without loss of generality, assume that 83 ; > 0. By
letting z = —o0, we have 71(g)/72(g) = m1(g)/m2(g). Then
by letting z = 0, we have & = «. Thus (A.6) is equivalent to
{0 =0a,7()/m2(g) = 71(8)/m2(8)}-

4. B4, #0, where By , is the component of B4 pertaining to z.
Then (A.6) is equivalent to

() L+ 20 () 1 42TV
T2(8) 1+ e@TV1) " ma(g) 1+ 2 t¥1(X)

(A7)
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for any x such that g1 + ﬂ£X # 0. We set x except the compo-
nent z to 0. By letting z — — B /B4 ;, we have 71 (g)/72(g) =
1(g)/m2(g). Then by differentiating both sides of (A.7) with
respect to z and letting z — —B1/p4 ;, we obtain o = &. Thus

(A.6) is equivalent to {& =, 771 (§) /72(8) = 71 (8)/72(8)}-

A.4.3 Identifiability for Probit and Complementary Log—Log Link
Functions. Assume that |B1| + |B4] # 0. Also assume that there ex-
ists a continuous covariate in X, denoted by Z, such that the corre-
sponding regression parameter §; is nonzero. Let Xy = 0 and gg = 0.
We claim that under the probit and complementary log—log regres-
sion models, n(1,x,g;0) = n(l,x, g; 5) for two sets of parameters
6 and 6 if and only if « =&, B = B, and 71 (g)/m2(g) = 71 (g)/72(g)
for g € G3.

We first prove the foregoing claim for the probit model. Suppose
that n(1,x,g;0) = n(l,x, g; 3). Without loss of generality, assume
that #* is a nonzero sequence. Let g = 2h*, h* + 7*, and 0 in turn.
Because S(g) has a single element for such g, we obtain

®(a) { 1 _1}
1-®@) | d(@+26 + 2+ BIx+28Tx + BIx)
_ %@ 1 1
- 1—@(&){¢(&+2E Rt Bax+ 2B+ B }
1 2 3 4 5
(A.8)

®(a) { 1 B 1}
1—®(@) [ o+ B +BIx+ Bl

- q’(&)N{ ! —1}, (A.9)
L=2@ lo@+ i +Bix+ B4
and
o (@) { 1 _1}
1—2@) | &+ plx)
@ (@) 1
:l—<1>(&){<1>(a+§3Tx)_1=’ (A10)

where ® is the standard normal distribution function. In (A.10), we let
x except the component z be 0. Then

(o) { 1 }_ ® (@) { 1 1}

1 — @) | @+ B:2) T 1-0@) | @+ B2 '
By letting z — oo or —oo, we conclude that 8, and Ez must have the
same sign. Without loss of generality, assume that 8; > ; > 0. Then
the left side divided by the right side goes to 0 as z — oo. This is a
contradiction. Therefore, 8; = ;. We differentiate both sides to obtain

Ple) dlatpr) 2@ d@+p2)
= @) a+p2)?  1-@@) @+ p2)?

By taking the ratio of the two sides and letting z — sgn(f8;)oo, we im-
mediately conclude that « = @. Applying this result to (A.8)—(A.10),
we obtain 28 + B2+ BIx+ 28T x+BIx = 28, + Bo + By x+ 2B x +
~T ~ =T =T ~T

Bsx, B1 +B3Tx+ﬂZX = p1+B3x+B4X, and ﬂ3TX = B3 x. Therefore,
B =pB.For g € Gs,

n(1,x,¢;0)
1 —®(a)

= |2t B+ B+ BT ©)/m (@)

+ ®(a+ ﬂgx)}
x [{1 — @ (e + B1 + BEx+ BIx))n1 () /m2(9)

+l-o@+pI0]". (A.11)
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It follows that 771 (g) /72 (g) = 71 (g) /72 (g). The other direction of the
claim is obvious in view of (A.11) and the expressions of 7(1, x, g) for
g€Gyand g€ Gy.

For the complementary log—log model, we obtain the same equa-
tions as (A.8)—(A.11) with ®(x) replaced by 1 —Nexp(—ex). In partic-
alar, e~ (@ 11— ey = e (@ Z 1)) (1 — ).
Taking the first and second derivatives of the two sides with respect
to z and forming the ratio of them, we obtain B,(e® TP + 1) =
Bz (e“"“ﬂ 4 1). Thus @ = & and B, = B,. The rest of the proof is the
same as that of the probit model.

A.4.4 Profile Likelihood of 6 Based on (8). Suppose that there
are J distinct observed values of (X, G), denoted by (x1,g1), ...,
(%7, 87)- Let nyj and ng; be the number of times that (x;, g;) is observed
in the cases and controls, and let §; be the jump size of the estimated
distribution of (X, G) at (xj, gj). Then the log-likelihood based on (8)
can be written as

J
In (8, (8}) = Y mijlogn(1,%;, &3 0)
J=1

J J
_nllog{Zn(l x;, gj; 0)5; } + nijlogs;,

Jj=1 j=1
where nij = ng; + ny;. Following Scott and Wild (1997), we intro-
duce a Lagrange multiplier A for the constraint ZJ- 8j =1 and set the
derivative with respect to §; to 0. We then obtain
nin(l, x;, gj; )
: J . .

8j 2 (1L, Xj. g3 0)8
Multiplying both sides by §; and summing over j, we see that
A =n| —n. Thus

n+j
n—ny+nn(l,x;, g 0)/1’
where u = Zle n(1,x;, gj; 0)4;. Plugging (A.12) into 1,(0, {5;}), we
see that the objective function to be maximized is, up to a constant Cj,
equal to

5= (A.12)

J
anjlogn(l,xj-,gj;é’)
j=1

J
n n
- ijlog{;n(l,x,-,gj; 0) + (1 - ;)u}
=1

+ (n—np)logu.

[0, ) =

Thus maxys;) [n(8, {6;}) < maxy, @, ) + Cp. If p maximizes
e, w, then a5 (0, w)/dpu =0, and the §; given in (A.12) satisfy
Z]:l 8; = 1. Thus maxy, [;;(8, u) + Cy < max(s;} n (6, {3;}). There-

fore, the profile log-likelihood function for § based on I,(, {5;})
equals the profile function based on [ (6, i), up to _a constant Cj,.
‘We maximize [0, w) via Newton—Raphson to yield 9 and 11 W, where
0 is the MLE of 6. It can be shown that up to a constant, /5 (6, i) is the
log-likelihood based on a random sample of size n from a conditional
distribution of Y given X and G. Hence the covariance matrix of (’0\, m)

can be estimated by the inverse information matrix of [ (6, p).

A.4.5 Profile Likelihood of @ Based on (9).
Write = (B, {7}, p). Also define

fxg 0=y

(hi,h1)eS(g)

oo =Y

(hi,h1) €S (g)

Suppose that (3) holds.
T
B  ZOChEID o 1y + (1 = p)mmy),

{pmidis + (1 — p)mgm}.

n
HOE Zlog[ >
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By a derivation similar to that of Section A.4.4, profiling (9) over
{Fg ()} is equivalent to profiling the following function over {j1g}:

T8, ()

n
= {vilog¢1 (X, Giz ) + (1 — yj) log £o(Gy: 6) }
i=1

=Y > IGi=g log{a (Xi. Gi: 0) +ny Tg )iz — /«Lg}

i—1 8 Z

+> —ymog{Zug},
i=1 8

where 71, is the number of times G = g in the sample. The covariance
matrix of 6 can be estimated by the sandwich estimator or the profile
likelihood method.

If X is independent of G, then we obtain the MLE 9 by maximizing
the following function:

n n
> yilog ¢y (Xi. Gis0) + > (1 = y) log £o(Gj: 0)
i=1 i=1

T, 1) =

n
+Y (I —yplogu

i=1

- Zlog{ 1=ru +rZ{1 Xi, g 0)}

i=1
where r =ny/n. Let H=BQ| + (1 — B)Qz, where B is a Bernoulli
variable, Q1 takes values in {(hg, hy); k=1, ..., K}, and Q) takes val-
ues in {(h, h)); k,I=1,...,K}. Suppose that Y is a binary variable
and that the conditional distribution of (B, Q1, O3, Y) given X is char-
acterized by

exp{#! W(B. Q. 0,.Y.X)}
> 8.0,.0,.y XPIBTW(B, 01, 02,7, X)}

where # = (—logp + logr/(1 — r), BT logm; —logp/(1 = p), ...,
logmg —logp/(1—p)T and W(B, Q1. Q5. Y. X) = (¥, YZT (X, H),
BI(Qy = (hy, h) + (1= B) Yy {1(Qa = (hy, hp) +1(Q2 = (g, b)),

(BIQ) = (hg.hg)) + (I — BYY ) {1(Q2 = (hg, hp) + 1(Q2 =
(h;,hK))}T We can show that l*(0 /) is equivalent to the log-
likelihood

P(B. 01,02, YIX) =

P W(B.01.02.Y:.X) }

= Laoi+0-50:e5G) Lbagranye” VD 0XD
We maximizeTZ (¢) through the EM algorithm, in which (B, Q1, Q;) is
treated as missing. The estimation of the covariance matrix of @ is
based on the information matrix of [} (#).
The complete-data score function is

n
Z |:W(Bi’ 01i, @i, i, Xi)
i=1

 Ybgrgy WO-a1.22.3. X)) exp(@T Wb, q1. 42.y. X))
Y bg1.q0.y XPIBT WD, g1, 42, v, X))

Thus in the E-step we calculate the conditional expectation of
W(B;, Q1i, O2i, Yi, X;) given (Y;, X;, G;) and the current parameter
estimates,

EDWV(B;, Q1. O2is Yi, X1 Yi, Xi, Gil

_ Ly G0 +(1-D)02€S(Gi e WOaL Y XD W b.g1 2. Y, X
Sy [G@1+(1=0)2€SG)e? W b2 1i X
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In the M-step we use the one-step Newton—Raphson iteration to update
the parameter estimates,

pUtD

n
=90 — 371 x Z[EWB, 01,02, Yi, X)|Y;, Xi, Gil
i=1

2 b.q1.q0.9 V(b 41,92, 5, X0) exp{#T Wb, q1. 2.y, Xi)}]
2b.qi.o.y exp{#TW(b, q1.92.7. Xp)} '

where

n
5= _[Z Ybgiany

i=1 2bq1.q2.5€

T
W®2(b, q1,92,Y, X,’)eﬂ W(b,q1.q2.y.Xi)
?TW(b.q1.q2.y.X)

Y barany Wb 1.2, 3. Xpe? W ql’m")}@}
bgrgry€® Wba142.X0))2

+Z[

and a®2 = aal .

A.4.6 Proof of Theorem 2. Write Fxg(X,g) = F;(x)qg and

Fy, 2(X, 8) S
ity distribution, we can choose a subsequence such that § — 6* and
Fxg(x,8) — Fx X8 = F*(x)qg, where qg > 0 for any g.

Because Fyg F} maximizes the likelihood, there exists some Lagrange
multiplier N g such that

= /15;: (X)gg. Because 9 is bounded and /ff:xy g 18 a probabil-

IGi=g)  mn(.Xigi0d  ~
Fix)  fozn(L,x,% 0)dFx ¢(x,2) g§="
g1 x,g » X, 85 ,g(X,

where ﬁ;{Xi} denotes the point mass of ’13; at X; and the integral
is interpreted as integration over X and summation over g. Because
T 'ﬁ;{Xi} = l,ig satisfies the equation

1(Gi=g)

al
2:)»g+n177(1 Xi, g 9)qg{nfxgn(1 X, 7 0) dFyx ¢ (x, 7))~
=1 (A.13)
and
- {X N nin(1,X;, g:0)q, }>0
1<i=n|"® nfxgn(l,x,g;ﬂ)dfx,g(x,’g') '

Clearly, Ag must be bounded asymptotically. Thus, by choosing a sub-
sequence, we assume that A g = Mg
By (A.13) and the Lipschitz continuity of n(1, x, g; 8*) in the con-
tinuous components of X, we can show that there exists a positive con-
stant § such that
} 5

on(l,x,g;0%)q;

A.*
Jxz (1%, 8 0%) dFY 4 (x.3)

mln{
g,X

Consequently, when 7 is sufficiently large,

n
Fi® =n"") 1(Gi=g.Xi<x)
i=1

x (max|

—1
X {n/Nn(],x,?;ﬂ)de,g(x,g)}
X,8

g +1(1,X;, g 0)3en

,SDI.
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We define an empirical function ?; whose jump size at X; is propor-
tional to

n (G =g (P(G =g, Y=0)+n(1,X;, g 00)g50

=1\ -1
X {/~n(17X,§§ 00)dFX,g(X”§)} ) .
X8

Then it can be verified that F, J{ converges uniformly to F I In ad-

dition, fg is absolutely continuous with respect to F , and the
Radon—Nikodym derivative dfT (x) /d;“ 1 (x) is bounded and con-
verges umformly to dF *(X) /dFg T (x). Let FX 2(X8) = il ¢(X)qg, and let
1,(8, {F 1 {gg)) be the log -likelihood based on (8) By the definition
of the MLE, n~11,(8, {Fg}, {@eh) — n~1,(89, {Fg}, {qg}) = 0. The
limit of this difference is the negative Kullback—Leibler information
of the distribution for (6%, {Fg‘}, {q;}) with respect to (8, {Fé}, {gg})
under P(Y = 1) = o. The identifiability conditions then yield 8* = ),
Fg = F; and g3 = qg. Thus the f:\onsistency of 9 is established. Be-
cause Fy,g is continuous, SUpy ¢ |Fx,g(X, &)
surely.

The derivation of the asymptotic distribution is similar to the proof
of theorem 1.2 of Murphy and van der Vaart (2001). We first obtain

a score function by differentiating /,,(6, {Fg}, {gg}) with respect to 9

— Fx g(x, g)| = 0 almost

along the direction v and with respect to Fx ¢ along the path Fe =
fx,g +€ f (X, g) dfx,g, where v has a unit norm and ¥ (-, g) is any
function whose total variation is bounded by 1. The linearization of the
score function around the true parameter value yields

nl/z{(vrﬂn + 21 @ - 00)
+ /(VTSZU + QoY) d(Fx g — Fx,g)}
n
= n*l/ZZyi{leo(l,Xi, Gi: 0. Fx.g)
+1F(1,Xi,Gi;0o,Fx,g)[/¢de,g]}

n
+n7 123" _y,-){sz,,«), X;, Gi; 00, Fx.g)
i=1

1 1p(0.X;. Gi: 0, Fx,g)[ / wde,g}}

+op(1),

where 211 is a constant matrix, 215 is a vector function of x, 51 [v]
and Q5[] are linear operators of ¥, and /gy and [r are the scores
with respect to @ and Fx g. The right side of the foregoing equa-
tion converges weakly to a Gaussian process, which depends on
(¥1,y2, -..) only through o. We can show that the operator B[v, ] =
(VTR + Q1 (W17, vI 12 + Qo[ 1} is invertible along the lines of
Murphy and van der Vaart (2001). It then follows from theorem 3.3.1

of van der Vaart and Wellner (1996) that nl/z(/ﬂ\ - 00’75",8 —Fxyg)
converges weakly to a Gaussian process.
Because the asymptotic distribution depends on (y,y2,...) only

via o, we assume that (y1,y;,...) are independent realizations from
a Bernoulli distribution with mean ¢. By choosing some ¥ such that
Blv, ¥] = ~vT,0)T for all v, we see that 9 is an asymptotically linear
estimator for 6 with the influence function in the score space. It fol-
lows from proposition 3.3.1 of Bickel, Klaassen, Ritov, and Wellner
(1993) that the limiting covariance matrix of n1/2(§ — 0p) attains the
semiparametric efficiency bound.
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A.4.7 Proof of Theorem 3. We call the probability distribu-
tion induced by (9) the pseudoprobability law, denoted by P,. Let
f(y.x, 80, {Fg},ay) be the density function under the true probabil-
ity law Py. Because a;, = o(n_l/z),

dpP " 91 i X;, Gi: 0, {Fo),
n Xp anz ogf (i zaaz {F¢}, a)

+o(l)} =P,
a=0

i=1
Thus any weak convergence under INJn also holds for P,. In addition,
by the arguments in the proof of Theorem 2, we can easily verify the
results of Theorem 3 when the data are generated from P, Thus The-
orem 3 holds when the data are generated from P,.

A.5 Cohort Studies

AS.1 Idennﬁabzlzty We show that if two sets of parameters (6, A)
and (8, A) yield the same joint distribution, then § = 6 and A = A.
First, it follows from Lemma 1 that y = . Suppose that

Z {X(?)(,’BTZ(X’H)Q(X (Y)eETZ(X,H))}A
HeS(G)

x {1— Q(K(?)eETZ(X’m)}I*AP;,(H)

= Z {A(y)eﬂTZ(x,H)Q(A(y)eﬁTZ(X,H))}A
HeS(G)

x {1 = Q(A(W)eP ZXINW=2p ().

By choosing A = 1 and integrating Y from O to t on both sides, we
obtain

> o(R@eF X D)p, a)
HeS(G)

3 o(a@eF ZEE)p, (H).
HeS(G)

Because Q() is strictly increasing, the foregoing equation implies that
AV)eB" ZXH) — A (T)eB" ZXH) for [ = (b, hy and H = (b, T). Tt
then follows from Condition 8 that § = 8 and A = A.

A.5.2 Proof of Theorem 4. Our problem is the same as that of
Zeng et al. (2005), except replacing the integration over random ef-
fects in that article by the sum over H € S(G). The asymptotic prop-
erties stated in the theorem follow from the identifiability shown in
Section A.5.1 and the proofs of Zeng et al. (2005), provided that we
can verify the following result: If there exist a vector u = (u B [LT)T
and a function ¥ (¢) such that

1719 (@0, Ao) + 14 60, Ag) [ [ dAo] —0. @Al
where [y is the score function for @ and [ [ f ¥ dAg] is the score func-
tion for A along the submodel Ag+ € f Y dAg,then p =0and ¢ =0.

To prove the desired result, we write out (A.14). We then let A =1
and integrate Y from O to T to obtain

> {0(Ao@)eFIZXMD) Py (1)
HeS(G)

{ O(Ag(0)ePo 2 ) ()P0 ZXH) T 2(X 1)
X
O(Ag(x)eBo ZXH))
. O(Ao(2)eBOZKHY [T (1) AN o (1) B0 Z XD
O(Ag(z)eBo ZXH)y

+ 1) VylogPy (H)} = (A.15)
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In contrast, by letting A =0 and Y = 7 in (A.14), we have

> {1-0(ap@ePaZXM) b, i)
HeS(G)

<|-

0o (@ePo ZXM) [ (1) d g (1) P12 XD

O(Ag()ePo ZXH) ()P0 ZXH) W T 2 (X, 1)

1 — O(Ag()ePrZXH))

1 — Q(Ag(r)ePa ZXH))

+ 1, Vy log Py (H)} = (A.16)
The summation of (A.15) and (A.16) entails ;L)T,Vy log Py (H) = 0.
From the proof of Lemma 1, ), = 0. We choose G = 2h or i+ h and
let A=1and Y =0 in (A.14) to obtain ;LIT;Z(X, H) + ¢(0) =0 for
H = (h, h) and (h, h). Thus, g =0 and ¥ (0) =
Finally, (A.14) with A = 1 implies that

0 under Condition 8.

DA (D)ePIZXHD) (¥ (1) dn g (1) PO EXH)
O(Ag(V)ePoZ X))

(h, h). Therefore, ¢ = 0.
[Received September 2004. Revised February 2005.]

v () + =0

for H =
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Comment

The detailed and careful article by Lin and Zeng deals with
the estimation of haplotype effects. It is perhaps useful to give
a little more genetical background on the problem at hand.
Through epidemiological studies (where, e.g., one compares
risk of siblings or twins of affected individuals with popula-
tion prevalence) we can identify that some diseases have a clear
genetic component. That is, there are modifications in the DNA

Chiara Sabatti is Assistant Professor, Departments of Human Genetics and
Statistics, University of California—Los Angeles, Los Angeles, CA 90095
(E-mail: csabatti@mednet.ucla.edu).

sequence that predispose carriers to develop the disease. These
modifications have varied nature; there may be mutations, inser-
tions, or deletions in the gene sequence that lead to the synthesis
of a different protein, or these variations may take place in non-
coding portions of DNA, affecting slicing patterns or expres-
sion levels. Understanding the nature of these mutations and
their functional effects is of considerable importance; it leads to
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Sabatti: Comment

a clear understanding of the disease origins and suggests drug
targets. This goal is achieved in a multistep process. Initially,
with genome-wide investigations, one tries to identify regions
that harbor susceptibility genes. These broad regions are then
analyzed in more detail, to lead to finer mapping and eventually
to identification of the disease variants. The study of haplotypes
(the collection of allele values at measured polymorphic sites on
a chromosome) plays a role in both these phases. Note that typ-
ically one does not assume that any of the variants recorded in a
haplotype is the disease-causing variant; generally, one simply
assumes that there may be an association between the disease-
causing variant and the alleles characterizing one haplotype.

To understand the origins of such an association, recall that
when a disease-causing mutation arises, it occurs on a specific
genetic background (a specific selection of alleles at the sur-
rounding polymorphic loci). As the disease mutation is passed
down across generations, the portion of the genome closer to
it is also transmitted, with boundaries determined by recombi-
nation events. Affected descendants are then carriers not only
of the disease-specific mutation, but also of the ancestral haplo-
type. Under the hypothesis of one disease-causing mutation, af-
ter a number of generations have intervened since the founding
event, affected individuals that may be practically considered
as unrelated will be sharing an identical-by-descent genomic
segment surrounding the mutation. This is reflected in the asso-
ciation between the disease status and haplotypes in the region
of interest. This scenario implies that the effect of the mutation
on fitness must be limited through reduced penetrance, late on-
set, mild disease symptoms, or recessive mode of inheritance,
or other factors, for the mutation to be passed down across gen-
erations, originating an association effect. If current cases are
in the vast majority due to new mutations, then one would not
be able to detect association between disease status and haplo-
type. In present of multiple mutations with founder effect, there
may be multiple “disease” haplotypes, and if the consequences
of the mutations are slightly different, then different haplotypes
may be associated with different risks.

The study of association of haplotypes with disease status
helps in the initial localization of the region harboring the dis-
ease gene. One can scan through the genome with a window
of fixed genetic length and test for association between disease
status and the haplotypes formed by the markers in the window.
The locations where association is detected can be considered
suspicious of harboring the disease gene. The study of haplo-
types effects further contributes to the identification of func-
tional variants and understanding their relevance in determining
disease risks.

At the beginning of the article, the authors motivate their
study with reference to association mapping, and in the con-
clusion they refer again to application of their methods to
genome scans. In my opinion, however, the specific problem
that they tackle is not so much related to mapping as to refining
the haplotype effects estimates once a location of interest has
been identified. This is an important and worthy goal, because
(1) ranking the haplotypes in terms of their association with
the disease is necessary to identify those that are most likely
to include the disease susceptibility locus, and (2) estimating
haplotypes effects helps quantify the impact of the mutation
in an epidemiological framework. It may seem that (2) should
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be more easily and effectively done when such a mutation is
found, but going from a locus to the identification of a muta-
tion can still require years of work, especially in complex dis-
eases where gene—gene and gene—environment interactions are
expected, so that a preliminary quantification of the effect size
is important to appropriately allocate resources. The methodol-
ogy described in the article shows how quantification of these
effects can be obtained, paying particular attention to the iden-
tifiability issues and asymptotic efficiency.

Genome screens for association mapping of disease genes
may not be the most direct application of the methodology de-
scribed here. For disease mapping, case-control is definitely
the preferred design, and so one needs to consider in particu-
lar the methods developed here for this purpose, coupled with
the idea of studying haplotype effects for sliding marker win-
dows. Computationally, the efficiency of the algorithm may be
unsatisfactory in a case-control study that is based on hundreds
of thousands of SNPs, as one can expect for genome-wide in-
vestigations. It must be emphasized that the methodology pre-
sented here leads to efficient estimates of haplotype effects. For
the purpose of mapping, it is not really necessary to get a “very
good” estimate of the haplotype effect, only to assess whether
there is any such effect. For this reason, one may be able to take
advantage of less sophisticated methods that are computation-
ally preferable. For example, consider the association tests im-
plemented in Mendel (Lange et al. 2001), which are quite fast
and can appropriately handle missing phase information (more
later). Aside from this computational issue, and perhaps more
important, a methodology that estimates the effects of well-
defined haplotypes will encounter difficulties due to the sparsity
of the data, as the author themselves note. Disease haplotypes
are eroded by the effects of recombination (which can occur in
many different locations in the sampled haplotypes) and mu-
tation. Models that allow one to combine information across
haplotypes, grouping “similar” ones, are expected to be more
powerful. This idea is at the basis of methodologies described
by McPeek and Strahs (1999), Service, Temple Lang, Freimer,
and Sandkuijl (1999), Lam, Roeder, and Devlin (2000), Morris,
Whittaker, and Balding (2000), Liu, Sabatti, Teng, Keats, and
Risch (2001), and Molitor, Marjoram, and Thomas (2003),
to cite just a few. Finally, when contemplating the idea of a
genome-wide series of association tests, one must put in place
some control for multiple comparisons. Although there have
been some contributions in this direction, the problem is not
yet solved (Sabatti, Service, and Freimer 2003; Lin 2005), and
the methodology presented here does not appear to be easily
amenable to permutation procedures.

Haplotypes are not directly observable. Polymorphism scor-
ing technologies lead to multiloci genotypes, as the authors
explain in their introduction. Information on which chromo-
some is carrying which observed alleles constituting a geno-
type (phase) can be inferred using family information, when
available, or assuming linkage disequilibrium and using EM
(Excoffier and Slatkin 1995), resorting to a Bayesian approach
(as in Niu et al. 2002; Stephens et al. 2001), or exploiting the
existence of block structure (as in Halperin and Eskin 2004).
The authors note the importance of not considering such in-
ferred haplotypes as true ones when making inference on their
effects, suggesting simultaneously imputing phase and estimate
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haplotype effects. This is an important point. Unfortunately, in
much of the genetics literature, inferred haplotypes are consid-
ered “true,” with varying impacts on the results of analysis. For
example, it is common practice to reconstruct haplotypes with
EM and then measure the amount of LD on the reconstructed
haplotypes. Now, given that EM algorithms operate under the
assumption of LD, it may well be that the resulting measures
are biased upward. But Lin and Zeng are not the first to note
the arbitrariness of this practice, or the first to propose map-
ping methodologies that deal directly with nonphased data. For
example, the mentioned association tests coded in Mendel can
be run on multilocus genotypes (Lange et al. 2001; Lazzeroni
and Lange 1997), and methods for fine mapping via reconstruc-
tion of ancestral haplotypes (as in Liu et al. 2001) take as input
unphased data and reconstruct haplotypes in the process. Lu,
Niu, and Liu (2003) have compared the results obtained by se-
quentially reconstructing haplotypes and applying association
mapping procedures with results derived by joint inference on
the data. In the present contribution, Lin and Zeng suggest us-
ing an EM algorithm to deal with missing phase information in
their likelihood. It is well known that the performance of EM is
unsatisfactory with a large number of markers. However, given
that the considered analysis is most interesting when applied
to rather short haplotypes, this should not represent a serious
limitation.

One interesting aspect of the article is that through their re-
gression model, the authors deal simultaneously with quanti-
tative and qualitative traits. In my comments, I have referred
mainly to disease traits, which are typically considered quali-
tative. However, quantitative traits are also the object of much
attention, and indeed the distinction between the two types is
often arbitrary (consider, e.g., the threshold models). In prac-
tice, the mapping of qualitative and quantitative traits is inter-
woven; faced with the difficulties in identifying susceptibility
loci for complex traits, geneticists are increasingly turning their
attention to quantitative endophenotypes, measured on a variety
of scales (e.g., brain morphology, gene expression values, en-
zyme concentrations, personality questionnaires) (see Freimer
and Sabatti 2003 for a discussion). The possibility of using the
same framework to study quantitative and qualitative traits is
definitely an advantage.

Another aspect that makes this article very relevant is that
the authors consider a variety of designs. The gene mapping
community has been very much focused on family-based or
case-control designs. But when a locus is identified and one
needs to determine the its effect in a population in its interaction
with environmental variables, then other designs, such as cross-
sectional and cohort studies, may be more relevant. Also, recent
years have seen increased interest in cohort-based genetics stud-
ies, exploiting cohorts that have been collected and analyzed
with respect to a variety of disease/health states/questionnaires.
Genotypes of individuals in these cohorts could be used to as-
sess possible associations between loci and a number of phe-
notypes of interest, translating the costs incurred by genotyping
such large and unspecific samples in savings.

The results obtained in the article concern the identifiability
of association parameters and the asymptotic behavior of their
estimates in the presence of covariate information. Indeed, it
is the consideration of covariates that substantially complicates
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the statistical analysis. In the context of estimating the popula-
tion effects of haplotypes associated with increased disease risk,
or with any phenotype of interest, it is particularly important to
consider covariate information. Gene—environment interactions
are known to be important in complex diseases, and the authors
should be congratulated for their thorough treatment of the sub-
ject.

Although haplotype effects are an important step toward
identifying the genetic variation underlying the traits under
study, ultimately one would like to isolate the polymorphism
that is directly responsible for the phenotype. As mentioned
earlier, this may or not be scored in the haplotype considered.
When the haplotypes are obtained by genotyping any variation
in an identified genomic region, one can reasonably assume that
the causative polymorphism is scored. One approach of interest,
then, is to try to single out this polymorphism among all of the
genotyped ones. For this purpose, regression models similar to
the one analyzed here have been proposed (see, e.g., Cordell
and Clayton 2002). Often the effects of SNPs are considered
one at a time, so that phase information is not always as rele-
vant. However, one would expect that if the causal SNP is not
included in the typed set, or if causality is achieved by more
than one mutation, then shorter haplotypes may be important
explanatory variables. It would be interesting to explore the im-
plications of the results presented here for this problem.
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Comment

Glen A. SATTEN, Andrew S. ALLEN, and Michael P. EPSTEIN

We congratulate Lin and Zeng for their ambitious and thor-
ough treatment of statistical procedures for haplotype analysis
of complex genetic traits. As the authors note, the development
of haplotype models is complicated by many factors, includ-
ing missing data arising from haplotype ambiguity in unphased
genotype data and (potentially) high-dimensional nuisance pa-
rameters arising from the modeling of covariates. These com-
plications illustrate the many challenging statistical problems
in genetic epidemiology that warrant the attention of the wider
statistical community.

Our interest has been primarily in case-control studies, and
this interest colors our subsequent comments. Several meth-
ods have been proposed for modeling haplotype—disease asso-
ciation (e.g., Zhao et al. 2003; Stram et al. 2003; Epstein and
Satten 2003; Lake et al. 2003). Of these, only the prospective
approaches of Zhao et al. and Lake et al. explicitly incorpo-
rate covariates. In the absence of covariates, Satten and Epstein
(2004) showed that there could be a remarkable difference in
efficiency between prospective and retrospective approaches.
This difference seems remarkable in light of the classic re-
sult of Prentice and Pyke (1979) on the equivalence of retro-
spective and prospective analyses of case-control data. In fact,
Prentice and Pyke showed that the retrospective likelihood for
case-control data was proportional to the prospective likelihood
times a factor related to the distribution of exposures, so that if
a saturated (nonparametric) model for the exposure distribution
were used, then inference based on prospective and retrospec-
tive likelihoods would be equivalent. In the haplotype problem,
a saturated model for the distribution of haplotypes would not
be identifiable given only genotype data; for this reason, the re-
sult of Prentice and Pyke does not apply. Carroll, Wang, and
Wang (1995) gave some guidance, indicating that a retrospec-
tive analysis will always be at least as efficient as a prospective
analysis and situations in which the retrospective analysis will
be more efficient correspond to cases where the distribution of
exposures is restricted. Haplotype models such as those in Lin
and Zeng’s (3) and (4) correspond to such restrictions.

The situation is considerably more complicated when co-
variates are included in a model. Here it would appear that
the retrospective likelihood is inconvenient, because it requires
us to specify the distribution of covariates given disease sta-
tus, a potentially infinite-dimensional nuisance parameter. For-
tunately, several authors, including Lin and Zeng, have shown
how to avoid this inconvenience. We feel that these are excit-
ing and important results. The difficulty of modeling the effects
of covariate and haplotype—covariate interactions using the ret-
rospective likelihood depends substantially on the presumed
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relationship between covariates and haplotypes in the popula-
tion. The simplest model is to assume that haplotypes and co-
variates are independent at the population level. This model is
biologically plausible if population stratification (confounding)
is absent and if certain haplotypes or genotypes do not cause
the exposure to occur. Although it is not hard to imagine be-
havioral covariates having genetic influence, the assumption of
haplotype—covariate independence is reasonable in many cases.

If haplotypes and covariates are associated at the popula-
tion level, then the situation is much more complicated. If for
each value of covariates X we can assume Hardy—Weinberg
equilibrium, then Lin and Zeng’s model 3 applies marginally.
However, conditionally on covariates X, we would expect a
different set of haplotype frequencies for each covariate value.
This is a modeling nightmare. Lin and Zeng have avoided this,
however, but at a different cost; they make the assumption that
haplotypes and covariates are conditionally independent, given
genotypes. This assumption is used when defining m, (y, x; 0),
where the integration is over the distribution of marginal haplo-
types corresponding to genotypes g, rather than the distribution
of haplotypes conditional on X. With this assumption, specify-
ing the haplotype frequencies at each covariate is unnecessary.
However, this assumption is unlikely to hold when X and G
are associated, unless genotypes specify haplotypes completely
(in which case there are no missing data). Thus we come to
a matter of style: Is it better to make a mathematically conve-
nient assumption that leads to more flexible models that may
not themselves be biologically plausible, or to stick with a sim-
pler model that may not describe the data as well but that does
have a chance of being correct? In fact, the assumption made by
Lin and Zeng includes the simpler model as a special case, so
that the sole cost of the assumption is an increase in complex-
ity. How does this play out in the case-control setting? If we
make the rare disease assumption (corresponding to the only
situation where a case-control study makes sense) and assume
haplotype—covariate independence at the population level, then
it is possible to show that the retrospective likelihood factors
into one part involving only the parameters of interest and a sec-
ond part involving only the nuisance distribution of exposures
in the population. This factorization is analogous to the clas-
sic result of Prentice and Pyke (1979) that enables prospective
analysis of a case-control study even though data are gathered
retrospectively. As a final comment on this issue, we note that
Lin and Zeng’s simulations assume that X and H are indepen-
dent at the population level, not just conditional on G.

Lin and Zeng give several results on the joint identifiability
of parameters governing relative risk and parameters governing
the distribution of haplotypes. We applaud these results, even
as we note some limitations. First, these results appear limited

In the Public Domain

Journal of the American Statistical Association
March 2006, Vol. 101, No. 473, Theory and Methods
DOI 10.1198/016214505000000826



108

to situations in which the model allows only for the effect of
a single nonnull haplotype, effectively comparing this “target”
haplotype with all others. Tests based on such a procedure can
perform very poorly in cases where more than one haplotype
affects disease risk. We feel that the modeling approach is es-
pecially important in just this case, because hypothesis tests for
single haplotype effects are tests of a composite null hypothesis;
such tests require the capacity to estimate relative risk parame-
ters for those haplotypes not constrained by the null hypothesis.
But estimation requires modeling the effects of multiple hap-
lotypes, which appears to go beyond the identifiability results
presented by Lin and Zeng. When interest is limited to models
of a single haplotype, fests can be constructed without much
difficulty that are valid regardless of the distribution of haplo-
types (see, e.g., Schaid et al. 2002; Zaykin et al. 2002). Thus
the identifiability results of Lin and Zeng are most important in
situations where one wishes to estimate the effect of a single
haplotype (relative to all of the others). Can these results actu-
ally be used to analyze real data? The answer to this question
is less clear, because the haplotype distribution parameters may
be only weakly identified in finite samples, especially when the
true parameters are close to the null hypothesis or where the true
risk model is close to dominant (a fact that will not always be
known a priori). Along these lines, we note that in their analy-
ses of the FUSION and simulated data, Lin and Zeng use the
stronger assumption that model 3 is correct.

Finally, some quibbles. Lin and Zeng claim to describe an-
alytical methods for “all commonly used study designs.” In
fact, genetic epidemiologists often use family-based association
studies, such as case-parent trio studies, that are not covered by
Lin and Zeng’s article. Recently, we have developed methods
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for fitting haplotype risk models using case-parent trio data that
are robust to misspecification of the parental haplotype distrib-
ution (Allen, Satten, and Tsiatis 2005). We have extended our
approach to include haplotype—covariate interactions, where the
robustness to misspecification of the parental haplotype distri-
bution enables a general dependence of haplotype frequencies
on covariates. These methods are based on the efficient score
function; we are currently studying the application of our ap-
proach to case-control studies. In particular, it appears possible
to remove any dependence of the distribution of H given G in
models with no covariates; given the assumption that Lin and
Zeng were forced to make, this will be of particular interest
should these methods extend to models that include haplotype—
covariate interactions in case-control studies. Another design
also not considered by Lin and Zeng corresponds to conditional
logistic regression of finely stratified data. Here we note that
the retrospective approach of Epstein and Satten (2003) can be
used with highly stratified data because the intercept parameter
is conditioned out; as a result, we can use this approach when
we have a large number of intercept parameters. We have also
developed an extension of the Epstein and Satten approach that
includes covariate effects in addition to haplotype effects (and
their interactions) for matched or highly stratified studies.

In summary, we congratulate Lin and Zeng on an interesting
and stimulating article.
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Comment

Nilanjan CHATTERJEE, Christine SPINKA, Jinbo CHEN, and Raymond J. CARROLL

Lin and Zeng are to be congratulated on an article that de-
scribes identifiability and estimation of haplotype distributions
and risk parameters for very general models, both prospectively
and for case-control studies. In particular, the identifiability
conditions will give important guidance to researchers as they
attempt to use different models for haplotypes besides Hardy—
Weinberg equilibrium (HWE).

Our major aim in this comment is to place Lin and Zeng’s
article in the broader context of various alternative methods for
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haplotype-based regression analysis. We point out the connec-
tions and the differences between these alternative methods, to
shed light on their relative merits. In particular, we note that
in some important subproblems, other methods are available.
These methods are efficient and simple to implement, and they
avoid the need to estimate possibly high-dimensional nuisance
parameters.

1. CASE-CONTROL STUDIES

Because haplotype-based association studies are becoming
increasingly popular, a number of researchers have developed
methods for logistic regression analysis of case-control studies
in the presence of phase ambiguity. The methods can be broadly
classified into two categories: prospective and retrospective.
Before going into technical details, it is useful to understand
the main principles behind these two classes of methods.
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Chatterjee et al.. Comment

With a slightly different notation than that of Lin and Zeng,
let D be disease status, H? be the “diplotypes” (i.e., the two
haplotypes an individual carries in his or her pair of homolo-
gous chromosomes), G be the observed genotype, and X be the
nongenetic/environmental covariates. Let the risk function sat-
isfy

logit{pr(D = 1|H?, X)} = o + m(H*. X, p1). (1)

where m(-) is known but of completely general form.

Under the foregoing notation, the prospective likelihood of
the data is given by pr(D|G, X), which ignores the fact that
under the case-control sampling design, data are observed
on (G, X) conditional on D. In contrast, the retrospective like-
lihood of the data is given by Pr(G, X|D) and accounts for the
underlying case-control sampling design.

When there are no missing data (i.e., G = HY), it fol-
lows from the well-known results of Prentice and Pyke (1979)
that the prospective approach is actually equivalent to the
retrospective maximum likelihood analysis, provided that the
distribution of the covariates (G, X) is treated completely non-
parametrically. Thus the prospective method is a “robust ap-
proach” for analysis of case-control studies that does not rely
on any assumption about the covariate distribution. In studies
of genetic epidemiology, however, it often may be reasonable
to assume certain parametric or semiparametric models for the
covariate distribution in the underlying source population. The
assumptions of HWE and gene—environment independence are
examples of such models. The retrospective likelihood can di-
rectly incorporate such assumptions into the analysis and can
be much more efficient than the prospective method when the
assumptions are valid (Epstein and Satten 2003; Chatterjee and
Carroll 2005).

1.1 Retrospective Maximum Likelihood Analysis
With Haplotype-Phase Ambiguity

Epstein and Satten (2003) first described the retrospective
maximum likelihood method for haplotype-based association
analysis of case-control studies. Incorporation of nongenetic
covariates X in this method is complicated by the fact that the
retrospective likelihood involves potentially high-dimensional
nuisance parameters that specify the distribution of X in the un-
derlying population. In the gene—environment interaction con-
text, and as in the simulation study and example of Lin and
Zeng, it is often reasonable to assume that H? and environmen-
tal factors X are independent in the population, with a paramet-
ric form

pr(HY = h?|X) = pr(H = h') = q(h", 0), )

where the model ¢(h%; 6) in turn could be specified according
to HWE or some of its extensions, as considered by Lin and
Zeng. More generally, one can assume a parametric model for
the diplotype distribution of the form

pr(H = h*|X = x) = q(h?, x, ). (3)

Model (3), for example, can incorporate departure from gene—
environment independence and HWE that may be caused by
“population stratification.” In particular, one could assume
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HWE and gene—environment independence conditional on var-
ious demographic factors, such as ethnicity and geographic re-
gions, and specify the haplotype frequencies conditional on
these factors according to a parametric model, such as the
polytomous logistic regression model (Spinka, Carroll, and
Chatterjee 2005). Moreover, (3) potentially can be used to di-
rectly model the association between haplotypes and environ-
mental exposure X.

Under models (2) and (3), Spinka et al. (2005) described sim-
ple and easily computable methods that avoid estimating the
nonparametric marginal distribution of X and exploit the infor-
mation available in (2) or (3) to increase efficiency. Chatterjee,
Kalaylioglu, and Carroll (2005) described similarly simple
methods applicable for family-based or other types of individ-
ually matched case-control studies. Let there be n; cases and
ng controls, and let # = pr(D = 1) be the marginal probability
of the disease in the population. Assume the definitions

k = Bo + log(ny/ng) — log{m/(1 — )}
and

expld{x + m(h, x, B1)}]
1 + exp{Bo + m(h, x, B1)}’

where Q = (8o, k, 07, ,BIT)T. Let Hg be the set of diplotypes
consistent with the observed genotype G. Define

> her SO X, Q)

Spinka et al. (2005) first showed that under certain conditions,
which are easily verifiable from the data, all of the parameters
in €2, including the intercept parameter B, are identifiable from
the retrospective likelihood [ [, Pr(G;, X;|D;), as long as the un-
derlying models are specified in such a way that  would be
identifiable from prospective studies. Moreover, the maximum
retrospective likelihood estimate of €2 can be obtained as a so-
lution of the score equation corresponding to the pseudolikeli-
hood

S(d, h,x, Q) =q(h,x,0)

L*(D,G,X,Q) =

N
I = Zlog{L*(Di, Gi, Xi, Q). 4)
i=1
Spinka et al. described strategies for estimating the regression
parameter 81 based on /* for both known and unknown values
of the marginal probability of the disease in the underlying pop-
ulation. If one is also willing to make the rare disease assump-
tion for all H? and X, then £* effectively becomes equivalent to
the method that Lin and Zeng derived in their section A.4.5 un-
der the assumption of gene—environment independence. Note,
however, that neither the rare disease approximation nor the
gene—environment independence assumption is necessary to
derive the simple pseudolikelihood £*.

An alternative representation of [* is very revealing. Con-
sider a sampling scenario where each subject from the under-
lying population is selected into the case-control study using a
Bernoulli sampling scheme where the selection probability for
a subject given his or her disease status D = d is proportional to
g =Ng/pr(D =d). Let R =1 denote the indicator of whether
a subject is selected in the case-control sample under the fore-
going Bernoulli sampling scheme. With some algebra, one can
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now show that the pseudolikelihood /* can be expressed in the
form

N
l*:Zlog{ Z pr(D;|H! = ', X;, Ri = 1)

i=1 heHg,
x pr(H! = h|X;, R; = 1)}

N
= log{pr(D;, Gi|Xi. Ri = 1)}. )
i=1
When no environmental factors are involved, Stram et al. (2003)
proposed an analysis of haplotype-based case-control studies
using an “ascertainment-corrected joint likelihood” of the form
[1;pr(D:, GilR; = 1). The representation of the I* given in (5)
suggests that under model (2) or (3) with F(x) treated com-
pletely nonparametrically, the efficient retrospective maximum
likelihood estimate of the haplotype frequency and the regres-
sion parameters can be obtained by conditioning on X in the
approach of Stram et al. (2003).

In most parts of their article, Lin and Zeng considered ret-
rospective maximum likelihood estimation under the model
that assumes H¢ and X are independent given G and then
allows the distribution of [X|G] to be completely nonpara-
metric. This model has advantages and disadvantages. It is
more flexible than the model (2) that assumes H¢ and X are
independent unconditionally; however, unlike model (3), it
cannot allow direct association between haplotypes and envi-
ronmental/demographic factors. Computationally, retrospective
maximum likelihood assuming model (2) or model (3) com-
pletely avoids estimation of the distribution of the possibly
high-dimensional covariates X. In contrast, under the model
considered by Lin and Zeng, one must estimate the nonpara-
metric distribution of X for each different genotype G, possibly
stratified by subpopulations—a potentially daunting task. Fi-
nally, in situations where the gene—environment independence
assumption is likely to be valid, either in the entire population
or within subpopulations, based on results of Chatterjee and
Carroll (2005) and Spinka et al. (2005), we conjecture that the
retrospective maximum likelihood method assuming model (2)
or model (3) can be much more efficient than that assuming the
model of Lin and Zeng.

1.2 Prospective Methods for Retrospective Data

Lake et al. (2003) described methods for haplotype-based
regression analysis based on the prospective likelihood of the
data (D, G, X), ignoring the true case-control sampling design.
For fixed values of the haplotype-frequency parameter 6, the
score equations for the regression parameters 8* = («, f1) un-
der model (2) corresponding to the prospective likelihood of the
data is given by

N
a0
0=> > 8,ﬁlog{pr,gwnhd,xo}
i=1 thHGi
d d.
x prge(Dilh?, Xgq(h®; 6)

X(Z

—1
prﬂ*<Di|hd,X,»)q<hd;9>> )
hde'HGi
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Unfortunately, this purely prospective score equation is bi-
ased under the case-control sampling design, even if the true
haplotype frequencies were known and the underlying HWE
and gene—environment independence assumptions were valid.
However, a simple modification of the prospective score equa-
tion is unbiased,

N
9
OZZ Z B 10g{prﬁ*(Di|h",X,-)}

i=1 thHG’-

x prg- (Dilh?, Xpra(h?, X)q(h?; 6)

-1
x( > pr,g*(Di|h",x,~>m(h",x,~>q(h";9)) :
thHG,‘

@)
where

1 +exp{x +m(h9, x, B1)}
1 + exp{Bo + m(h?, x, B1)}

Spinka et al. showed that with an appropriate rare disease ap-
proximation, the modified prospective estimating equation (7)
is equivalent to the approximate estimating equation approach
proposed by Zhao et al. (2003). Spinka et al. described strate-
gies for estimating 81 and « based on the modified prospective
estimating equation (7), where the nuisance parameters 6, and
possibly Bo, are estimated based on score equation derived from
the pseudolikelihood /*. Simulation studies show that such a
prospective approach generally tends to be much more robust
to violation of both HWE and the gene—environment indepen-
dence assumption compared with the retrospective maximum
likelihood method (see also Satten and Epstein 2004).

ra(h?,X) =

2. COHORT-BASED STUDIES AND THE COX
PROPORTIONAL HAZARDS MODEL

Lin and Zeng admirably describe fully efficient nonpara-
metric maximum likelihood estimation for fitting a general
haplotype-based semiparametric linear transformation model to
cohort studies with unphased genotype data. An alternative esti-
mator considered by Chen, Peters, Foster, and Chatterjee (2004)
and Chen and Chatterjee (2005) for the popular Cox propor-
tional hazard (CPH) model deserves attention. Consider the
CPH model for specifying the hazard function for a subject
given his or her diplotype status (H%) and environmental co-
variates (X) as

Al HY, X1 =2 (ORH, X; 1), (8)

where A () is the unspecified baseline hazard function, R(H' d
X; B1) is a parametric function describing the relative risk as-
sociated with the exposure (H?, X), and B1 is the vector of as-
sociated regression parameters of interest. As before, assume
that Pr(H9) = q(Hd ; 0) is specified according to HWE and that
6 denotes the associated haplotype frequency parameters. The
model (8) cannot be used directly, because H' 4 is not observable.
Following Prentice (1982), one can derive the hazard function
for disease conditional on the observable genotype data G and
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covariates X in the form
A[t1G. X1 = ho(DR*{G. X: 1, B1. 6. Ao ()}, 9)
where
RYG.X: 1, B1.6. Ao())
=E{RH? X: B1)|G.X. T > 1}
_ Yniers RHY X B prlT > 11H?, X1q(H; 6)
- > micrg PUT > 1HE X1g(HE 0)

In general, standard partial likelihood inference cannot be
performed based on (9), because the relative risk function
R*{G,X;1t, B1,0, Ao(-)} itself depends on the baseline hazard
function Ao (7). However, Chen et al. (2004) showed that an om-
nibus score test for genetic association can be performed using
outputs from standard statistical software for partial likelihood
analysis. Based on (9), Chen and Chatterjee (2005) also de-
scribed alternative strategies for estimation of the risk parame-
ters B1. In particular, the authors observed that for rare disease,
one could assume that pr[7 > ¢|H¢, X] ~ 1. The corresponding
induced relative risk function,

> hier, REH X Br)g(H?; 6)
Y Hiery 4(H? 60)

is free of the baseline hazard function Ag(¢). Thus, under the
rare disease approximation, one could estimate B8 by maxi-
mizing the partial likelihood associated with the relative risk
function R*(G, X; B1; 5), where @ is a consistent estimate of
the haplotype-frequency parameters 6. Chen and Chatterjee
described alternative strategies for obtaining consistent esti-
mate of 6 for cohort and nested case-control studies. A simple
asymptotic variance estimator was also provided. Simulation
studies for the full cohort design show that the loss of efficiency

R*(G,X; B1;6) =

’
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in this pseudolikelihood method was quite small compared with
the fully efficient nonparametric maximum likelihood estimator
(NPMLE) estimator proposed by Lin (2004).

An advantage of pseudolikelihood approach of Chen and
Chatterjee (2005) is its wide applicability to alternative cohort-
based study designs. In particular, for studies of rare dis-
eases such as cancer, it is common to conduct case-control
or case-cohort sampling within a cohort to select a subset of
people for whom genotype and expensive environmental ex-
posure information will be collected. Various alternative types
of partial likelihoods that are currently available for analy-
sis of nested case-control and case-cohort studies can be ap-
plied to estimate B; based on the induced relative risk function
R*(G, X; B; 5). Future research is merited to study whether
and how one can obtain the NPMLE for these alternative de-
signs, especially when both genotype and environmental expo-
sure data are available only for the selected subsample of the
subjects. We look forward to Lin and Zeng’s further innova-
tions in this area.
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Comment

All data analysis relies on a model that is, strictly speak-
ing, not correct. Choices about which features to model and
which to ignore distinguish successful models from the rest.
Without artful modeling, statisticians would be unable to make
inferences based on finite samples. In this wide-ranging arti-
cle, Lin and Zeng (LZ hereinafter) make novel contributions
to the statistical genetics literature by introducing new mod-
els and providing a rigorous statistical analysis of these mod-
els. Specifically, their article builds on a series of related works
modeling the effect of haplotypes on the risk of disease. We

Jung-Ying Tzeng is Assistant Professor, Department of Statistics, North Car-
olina State University, Raleigh, NC 27695 (E-mail: jytzeng @stat.ncsu.edu).
Kathryn Roeder is Professor, Department of Statistics, Carnegie Mellon Uni-
versity, Pittsburgh, PA 15213 (E-mail: roeder@stat.emu.edu).

congratulate the authors for providing a firm theoretical foun-
dation in this exciting area of research. The authors investigate a
family of models that address a broad range of sampling designs
commonly used in genetic epidemiology, but for brevity we fo-
cus our remarks on those models appropriate to case-control
data.

Schaid et al. (2002) published a practical methodological ap-
proach for haplotype association analysis using a prospective
model to link the risk of disease to observed genetic data. The
chosen model ignored two features of the data: the case-control
sampling scheme that typically generates the data and poten-
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tial violations of “Hardy—Weinberg equilibrium (HWE)” in the
pairwise distribution of haplotypes in the population. Zhao et al.
(2003) proposed a similar model. By ignoring the retrospective
nature of the data, these authors were able to easily incorporate
environmental covariates into their models. Both of these arti-
cles took a hypothesis testing approach and focused on testing
for the presence of haplotype effects, rather than estimating the
size of such effects.

Subsequently, Epstein and Satten (2003) introduced an ap-
proach based on a retrospective model that accounts for case-
control sampling of the data. Building on these results, Satten
and Epstein (2004) chose not to assume HWE. They used a
population genetics model that permits “inbreeding” (a particu-
lar violation of independence of haplotype pairings within indi-
viduals). Their retrospective approach does not easily facilitate
the inclusion of environmental covariates. LZ continue in this
line by developing more general models that handle all three
data features described earlier: inbreeding, environmental co-
variates, and retrospective sampling.

Each step in this progression has led to models of increasing
complexity. Clearly, more complex models may more closely
reflect reality. The question is whether the extra complexity im-
proves the inferences in realistic situations. This is the question
that we pursue in this discussion.

Consider “inbreeding.” This term is generally used to de-
scribe a situation in which there is an increase in the proba-
bility of observing matching genetic information at the pair of
haplotypes within an individual, that is, wg; > nkz. This excess
of matching haplotypes (called homozygotes) tends to follow
the model m = pmp + (1 — p)ﬂ,f, where p is the probabil-
ity that both of a pair of inherited haplotypes trace back to a
common ancestor. Excess homozygosity in the controls arises
naturally under four scenarios: cultural practices that encourage
marriage between close relatives, insular populations for whom
the present generation traces back to a small number of ances-
tors, populations consisting of subpopulations whose members
rarely intermarry (i.e., population substructure), and laboratory
error.

Cultural norms generally discourage marriage among rela-
tives, and hence inbreeding levels in human populations tend
to be very low. For instance, LZ estimate p = .0002 in the
FUSION data described in their article. In populations in which
inbreeding is considered acceptable, even encouraged, Donbak
(2004) assessed the level of inbreeding to be p = .015. Contrast
this with the level of inbreeding (p = .05) used by Satten and
Epstein (2004) and LZ in their simulation studies. For a large
population to attain inbreeding levels of .05 would require a
substantial fraction of the marriages to be between first and sec-
ond cousins (Lange 1997).

The other potential for inbreeding, insular populations, is
best illustrated by the Hutterite population of North Dakota,
whose ancestry can be traced back to 90 ancestors in the
1,700s/1,800s. Yet even this unique population has only a mod-
erate amount of inbreeding (p = .03) (Bourgain et al. 2003).

Thus true inbreeding in most human populations is consid-
erably less than .05. Yet we sometimes observe a substantial
excess of “homozygotes” in control subjects, leading to strong
violations of HWE. Presumably the third and fourth features
are the likely causes.
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Population substructure is known to lead to excesses of ho-
mozygosity in practice (e.g., Devlin, Risch, and Roeder 1990).
If the violation in HWE is due to population substructure, then
we argue that it is not acceptable to perform further analysis
of the data using the type of association analysis developed
by LZ. Why? Geneticists are not interested in simply finding
associations; rather, they wish to discover causal associations.
However, population substructure leads to confounding due to
Simpson’s paradox. The lurking variable in this context is sub-
population membership. For example, suppose that the disease
is more common in one subpopulation than the other. Any ge-
netic marker that differs strongly in distribution across the sub-
populations will exhibit a spurious association with the disease
(Lander and Schork 1994; Devlin and Roeder 1999). Conse-
quently, great care must be taken to control for population sub-
structure in good quality studies of genetic association. If it
is impossible to control for this feature directly by stratifying
the data by subpopulation, then a different experimental de-
sign similar to matched case-control is often used (Ewens and
Spielman 1995). Thus by careful design, we can usually rule out
population substructure as the cause of excess homozygosity.

Laboratory error often yields an excess of apparent homozy-
gotes; however, these violations are rarely seen in the final
stages of data analysis. Standard laboratory practice involves
screening all genetic markers that result in violations of HWE
to determine whether they are the consequence of errors. Thus
in careful studies, violations of HWE in the control sample are
unlikely in practice. If a testing framework were used, it would
be reasonable to assume HWE under the null hypothesis.

Next, we consider “testing” versus “estimating’ the effect of
haplotypes. Traditionally, genetic epidemiologists have tested
B = 0 rather than attempting to estimate the haplotypic effect.
To understand why, it is necessary to consider the history of ge-
netic epidemiology in this domain. Although geneticists trac-
ing back to Fisher have been remarkably adept in their use of
quantitative tools, the data that they deal with are not always
amenable to modeling that is excessively detailed. Moreover,
progress in mapping the genetic risk factors for complex disease
has been slow, due to the “needle in a haystack™ nature of the
quest. Millions of polymorphisms potentially could be tested
for association. A disease may be caused by multigenic and/or
environmental factors, which are likely to interact in complex
ways. Effects of individual genes are likely to be small and,
even worse, to vary across ethnic groups. For these reasons, the
odds are against discovering risk factors, let alone refined esti-
mates of the magnitude of these risks.

In practice, however, a number of steps are taken to improve
the likelihood of success. Although some steps could poten-
tially introduce estimation bias of g, they are amenable to sim-
ple testing for the presence of a genetic effect. For example,
to enhance the chance that participants in a study have the dis-
ease due to a genetic cause (rather than environmental ones),
diseased subjects often are included only if they have close rel-
atives with the disease. This type of sampling leads to an ascer-
tainment bias in . This is just one of the substantial biases that
might be present in a genetic study.

LZ’s model requires specification of a particular haplotype
as the associated one. This requirement is made rather cava-
lierly, considering that there typically is no prior knowledge
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about the relationship between haplotypes and a disease phe-
notype. Indeed, for the most part haplotypes do not cause dis-
ease; rather, one or more genetic variants do. Haplotypes are
used as proxies for these variants in association studies because
the spatial correlation within the haplotypes often leads to a
correlation between a causal variant and one or more distinct
haplotypes. Certainly there is no guarantee that there will be a
one-to-one mapping between a haplotype and a causal variant.
Consequently, there is no reason to believe that specific hap-
lotypic effects are interpretable or reproducible across ethnic
groups or studies.

What is the alternative to the choice of preselecting the asso-
ciated haplotype? Even in the testing framework this is a chal-
lenging problem. Chapman, Cooper, Todd, and Clayton (2003)
performed some intriguing simulations and reached the con-
clusion that haplotypes have very low power in a search for
genetic risk factors. Their work suggests that greater power
can be obtained by analyzing a set of single nucleotide poly-
morphisms (SNPs) with a simple application of Hotelling’s T2
(Fan and Knapp 2003). Roeder, Bacanu, Sonpar, Zhang, and
Devlin (2005) took this view one step further and showed that
the maximum of single SNP tests is yet more powerful than
Hotelling’s 72 in some instances. The reason that naive haplo-
type analysis performs poorly is because it requires too many
degrees of freedom when the causal haplotype is not known
a priori. To fully capitalize on their potential, haplotype-based
methods that do not dilute their power to detect interesting re-
lationships between haplotypes and phenotypes in the sheer
volume of distinct haplotypes are needed. Tzeng (2005) used
haplotype similarity to cluster related types and reduce the di-
mension of the problem. This approach can improve the power
of the test. Seltman, Roeder, and Devlin (2001, 2003) pro-
posed a method of haplotype analysis that exploits the evolu-
tionary history of the haplotypes to limit the tests performed.
This approach increases the interpretability and the power
of generic haplotype analysis. Alternatively, Tzeng, Byerley,
Devlin, Roeder, and Wasserman (2003) described an approach
that tests for any unusual sharing of haplotypes among the cases
that requires only a single degree of freedom. (For a summary of
the challenges in this area, see Clayton, Chapman, and Cooper
2004.)

Thus far we have discussed three scenarios that may intro-
duce bias in estimators of 8: (A) inbreeding, (B) ascertainment
bias, and (C) a causal SNP not uniquely associated with a haplo-
type. To examine the impact of these violations of assumptions,
we generated n = 500 cases and controls using (12) from LZ
with « = —4 and B, = B3 = 0. To expedite the simulations, we
made a simplification: We simulated the data from a list of three
haplotypes (h1 = 11, hp = 01, and h3 = 00) with probabilities
(1 = .2, my = .3, and w3 = .5). To estimate 81 we used LZ’s
rare disease algorithm as described in section A.4.5, but assum-
ing HWE. Under scenario (A) we allowed a realistic violation
of HWE and simulated data with an inbreeding coefficient of
p = .015. In scenario (B), we drew the cases from families with
an affected sibpair (one child sampled per family). In scenar-
i0s (A) and (B), the causal SNP is in position 1, which leads
to a unique mapping between h; and SNP;. In scenario (C),
the causal SNP is in position 2. Consequently, for this scenario
both A1 and h; are associated with the phenotype. For all three
scenarios, only the effect of #; was investigated.
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Table 1. Bias and Mean Squared Error (MSE) of 1
B1 Scenario Bias MSE
5 Baseline —.002 .010
[A] p=.015 .023 .012
[B] Ascertainment bias 273 .083
[C] Multiple causal haplotypes -.217 .058
0 Baseline —.002 .013
[A] p=.015 .001 .012
[B] Ascertainment bias .002 .008
[C] Multiple causal haplotypes .002 .012

NOTE: The results are based on 200 simulations with 500 cases and 500 controls. Scenario
“Baseline” refers to p =0, no ascertainment bias, and one causal haplotype h .

The bias of ,31 is indicated in Table 1. Note that the ob-
served bias is negligible when inbreeding is ignored. This small
level of bias is likely the reason why virtually every pub-
lished method for estimating haplotype distribution is based on
a model that assumes HWE. Alternatively, ascertainment bias
leads to a substantial bias in the estimated effect of the haplo-
type. Clearly, if the size of §; is of interest, then care must be
taken to model the ascertainment process. Finally, the bias due
to nonunique association between SNPs and haplotypes is also
considerable. This supports our view that it may be difficult to
interpret f; in practice.

Thus, although LZ provide models that are closer to truth,
we believe the nature of the data is not yet in sync with the
refinements to the model that LZ have introduced. Nevertheless,
technology continues to improve the quality and amount of data
available. The likelihood of success in the quest to discover the
genetic risk factors for complex disease rises accordingly. So
although we think LZ are ahead of their time for most genetic
analyses at the moment, as the data improve and become more
focused, it will be advantageous for statisticians to have refined
models with good properties at their fingertips.
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Comment

1. INTRODUCTION

I congratulate Professors Lin and Zeng (LZ for short) on their
fine work on inference on haplotype effects in genetic associ-
ation studies. The completion of the Human Genome Project
and near completion of the HapMap project make genomewide
genetic association studies of complex traits now a reality. One
of the main challenges is performing rigorous and efficient sta-
tistical analysis for identifying genetic variants that explain the
variation of the traits of interest in the population. Such traits
can be binary, such as disease status; quantitative, such as blood
pressure; censored survival data, such as age of disease onset;
or longitudinal or functional data, such as growth curve. LZ
provide a unified framework for haplotype association analysis
for different types of traits and several different study designs.
Although the likelihood-based methods using the EM algorithm
for inferring the missing phases of the haplotypes have been
studied and reported by many authors in recent years, most of
these articles were published in genetics journals or genetic epi-
demiological journals, and some of them lack statistical rigor.
The major contribution of LZ’s article is to provide a rigorous
treatment to the problem and the methods developed previously,
especially in terms of parameter identifiability and the assump-
tions for validity of the likelihood-based statistical inferences.

Instead of commenting on the theoretical content of the arti-
cle, I provide some comments on the following aspects: the de-
sign of genetic association studies, alternative parameterization
of genetic variants, and incorporation of additional biological
information into genetic association analysis.

2. STUDY DESIGNS

LZ consider several commonly used study designs in tradi-
tional epidemiological studies, including cross-sectional stud-
ies, case-control studies with known or unknown population
totals, and cohort designs. Due to the cost of genotyping and
collection of environmental covariates, the most practical and
the most commonly used design among these listed for large-
scale genetic association studies is the case-control design
with unknown population totals. Inferences for such a design
were investigated by LZ in their simulations and application
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to the FUSION data. The traditional cohort design is proba-
bly not practical or necessary for large-scale genetic associa-
tion studies. If age of onset and haplotype-specific risk ratios
are important, then case-cohort or nested case-control design
may provide a feasible alternative, especially for relatively rare
diseases. Chen, Peters, Foster, and Chatterjee (2004) and Chen
and Chatterjee (2005) proposed likelihood-based score tests for
haplotype association and likelihood-based procedures for esti-
mating the haplotype risk ratio parameters in the framework of
the Cox proportional hazards model, where they proposed first
estimating the haplotype frequencies and then estimating the
risk ratio parameters. It should be easy to develop a nonpara-
metric maximum likelihood estimator (NPMLE) procedure in
the framework of missing data. Under the case-cohort or nested
case-control design, there are two types of missing data. For
those who were cases or were selected as controls or a subco-
hort, we may miss the phases of the haplotypes; for those who
were disease-free but were not selected as controls or a subco-
hort, we miss their genotypes and of course also their haplo-
types. The EM algorithm can be developed for the NPMLE to
estimate the haplotype frequencies, the baseline hazard func-
tion, and the haplotype-specific risk ratios simultaneously. It is
also interesting to develop rigorous statistical inference proce-
dure for the class of semiparametric linear transformation mod-
els considered by LZ for case-cohort or nested case-control
designs. Such procedures should contribute greatly to the fu-
ture of the haplotype-based genetic association analysis.

3. PARAMETERIZATION OF GENETIC VARIANTS

Haplotype-based genetic association analysis as considered
by LZ provides one way of identifying genetic variants that
are related to complex traits. However, there are some un-
solved practical issues when a large set of SNPs are typed and
investigated; for example, how many SNPs one should con-
sider in haplotype analysis, and how one can efficiently deal
with many rare haplotypes. Recent idea is to use evolutionary-
based grouping of rare haplotypes in association analysis to
reduce the degrees of freedom (Tzeng 2005). Such grouping
depends, of course, on the population models assumed, which
sometimes can be difficult to justify. In addition, the models
parameterized in terms of haplotypes may not be appropri-
ate for modeling complex higher-order interactions between
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Li: Comment

the SNPs. Recently there have been some new developments
in modeling more complex interactions among the SNPs than
what the haplotypes can model. These include the logic re-
gression models (Ruczinski, Kooperberg, and LeBlanc 2003;
Kooperberg and Ruczinski 2004), where logic combinations of
the binary variables coded for the SNPs are treated as predic-
tors. Huang et al. (2004) developed a tree-structured supervised
learning methods, called FlexTree, for studying gene—gene and
gene—environment interactions in which they considered both
an additive score model involving many genes and a model in
which only a precise list of aberrant genotypes is predisposing.
These models hold great promise in modeling complex inter-
actions among the gene variants. Alternatively, one can model
the genotype effects over many SNPs and use the recently de-
veloped methods in the analysis of high-dimensional genomic
data in selecting relevant SNPs and their interactions (Efron,
Hastie, Johnstone, and Tibshirani 2004; Gui and Li 2005a,b;
Li and Luan 2005). Among these methods, the threshold gra-
dient descent procedure (Friedman and Popescu 2004; Gui and
Li 2005a) can be used to implicitly model the linkage disequi-
librium between the SNPs and the boosting procedure with re-
gression trees as a base learner (Friedman 2001; Li and Luan
2005) provides an interesting way to model complex interac-
tions among the SNPs. Which of these models is the best for
identifying the gene variants related to complex traits remains
to be seen.

4. INCORPORATING ADDITIONAL
BIOLOGICAL INFORMATION

Although new high-throughput technologies are continu-
ously being developed and elaborated for biomedical research,
it is also extremely important to make full use of the data
and knowledge accumulated by traditional experiments. This
knowledge is often stored in databases as “metadata,” usually
defined as “data about data.” For example, it is now known that
many aspects of cancer result from deregulation or disturbance
of interacting signaling pathways and regulatory circuits that
normally control processes of the cell cycle, apoptosis, cell—cell
adhesion, and cytoskeletal organization. Deregulation of these
pathways often leads to aberrant signaling and the correspond-
ing cancer hallmarks, such as increased proliferation, decreased
apoptosis, genome instability, sustained angiogenesis, tissue in-
vasion, and metastasis (Hanahan and Weinberg 2000). Stud-
ies of these deregulated pathways have revealed genomic and
biological differences between tumor and normal cells. These
observations suggest that genomic data and metadata such as
known pathways or networks have great potential in identifying
genetic variants and pathways that contribute to the risk of can-
cers and to the variability in treatment responses among cancer
patients. Important metadata that have been widely used in bio-
medical research include Gene Ontology (GO) (Asburner et al.
2000), the KEGG metabolic pathways database (Kanehisa,
Goto, Kawashima, and Nakaya 2002), and BioCarta pathways
(www.biocarta.com).

One limitation of almost all of the available methods for
genetic association analysis of SNP data is that known biologi-
cal knowledge derived from metadata, such as known biolog-
ical pathways, is rarely incorporated into the analysis. From
a statistical standpoint, doing this may require a whole new
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set of regression analysis methods, where the levels of activity
of several biological networks are treated as predictors. How-
ever, such network activities cannot be measured directly, but
they may be inferred from complex combinations of genetic
variants in genes within the pathways. Such biological knowl-
edge can be used to form more biologically relevant disease-
predisposing models, including complex interactions among
the genetic variants. In addition, biological information also
provides an alternative for mediating the problem of a large
number of potential interactions by limiting the analysis to bi-
ologically plausible interactions between genes in related path-
ways. In general, risk interactions are more plausible between
genes involved in a physical interaction, found in the same path-
ways, or involved in the same regulatory network (Carlson,
Eberle, Kruglyak, and Nickerson 2004). Incorporating these
metadata into current genetic association analysis would appear
to hold great promise in large-scale genetic association analysis.

Finally, I agree with LZ that there are many interesting statis-
tical problems related to large-scale genetic association analysis
and more efforts from statisticians are needed to develop robust
and theoretically sound strategies for identifying genetic contri-
butions to disease and pharmaceutical responses and for identi-
fying gene variants that contribute to good health and resistance
to disease.
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Rejoinder

We are grateful to the editor and associate editor for organiz-
ing the discussion of our article and to the discussants for their
valuable contributions. The discussants are leading researchers
in statistical genetics, and we greatly appreciate their expert
opinions and insightful comments.

Inference on haplotype effects is a hot topic in genetics. From
a statistical standpoint, the problem is very interesting and chal-
lenging because of haplotype ambiguity and high-dimensional
nuisance parameters. Because the number of haplotypes within
a candidate gene can be large and the underlying biology is
mostly unknown, modeling the haplotype effects correctly is
difficult. The task becomes more daunting when the study in-
volves a large number of SNPs. The comments provided by
the discussants underscore the importance of haplotype analy-
sis and reflect the many challenges confronted by data analysts.
Indeed, a major motivation for writing our article was to bring
these challenges to the attention of the broader statistical com-
munity. Here we address the main issues raised by each group
of discussants.

1. RESPONSE TO SABATTI

Dr. Sabatti offered an excellent description of the important
roles of haplotype-based studies in localizing regions harboring
disease susceptibility genes and in identifying the functional
variants. She also provided a nice discussion of the potential
use of our methods in different types of studies. Although the
numerical results in our article pertain to the inference on hap-
lotype effects within a region of interest, the theory developed
in the article allows one to perform association mapping as
well. As we mention in section 5 of our article, one can scan
through the genome with sliding marker windows and per-
form an overall likelihood-ratio test for association between the
disease phenotype and the haplotypes formed by the markers
in each window. In genomewide investigations, environmental
factors are typically ignored, so the maximization of the like-
lihood given in (9) of our article is very fast. Rare haplotypes
need to be removed or combined in the analysis so as to avoid
the sparsity of the data. The effects of multiple comparisons can
be adjusted by permuting the data or by applying the Monte
Carlo method of Lin (2005). An article on haplotype-based as-
sociation mapping is currently under preparation.

2. RESPONSE TO SATTEN, ALLEN, AND EPSTEIN

When we started this project 3 years ago, the article by
Epstein and Satten (2003) was unpublished. The authors kindly
provided us with earlier versions of their article, from which
we learned a great deal. In fact, our work on case-control stud-
ies with unknown population totals was largely motivated by
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their work. We have also greatly benefited from personal com-
munications with them.

The first major comment of Drs. Satten, Allen, and Epstein
(SAE hereinafter) pertains to the efficiency advantages of the
retrospective likelihood analysis over the prospective likelihood
analysis for case-control studies. Satten and Epstein (2004)
found considerable efficiency differences in estimating main
haplotype effects. Our simulation studies revealed that the dif-
ferences can be even more substantial in estimating haplotype-
environment interactions. (The results are not given in the final
version of our article.) There is a potential price for the effi-
ciency gains: the retrospective likelihood is less robust against
violation of Hardy—Weinberg equilibrium (HWE).

We agree with SAE that the dependence between haplotypes
and covariates is a difficult issue and that the independence as-
sumption is reasonable in many cases. For all study designs,
the likelihoods involve the conditional distribution of covariates
given haplotypes and genotypes, so one must either assume the
conditional independence of covariates and haplotypes given
genotypes or model the conditional distribution of covariates
given haplotypes. Our work accommodates both the situations
of conditional independence and unconditional independence.
The distinction between the two situations is immaterial to
cross-sectional and cohort studies, because the likelihoods for
the parameters of interest are the same. For case-control stud-
ies, the computations are slightly more demanding under con-
ditional independence than under unconditional independence.

As we mention in section 2.1 of our article, there is much
flexibility in specifying the regression effects of haplotypes
on the phenotype. With K haplotypes, we can either compare
one haplotype with all the others or compare each of the first
(K — 1) haplotypes with the last haplotype. The numerical re-
sults in our article pertain to the first formulation; however, all
of the theoretical results, including those on identifiability, and
the numerical algorithms apply to the second formulation as
well. We agree with SAE that the identifiability results under
arbitrary distributions of haplotypes do not guarantee stable es-
timates in small samples, which is why all of our data analysis
relies on model (3).

Our article deals exclusively with studies of unrelated in-
dividuals. The methods developed by Allen et al. (2005) for
case-parent trio studies are very clever and provide another il-
lustration of the usefulness of semiparametric efficiency theory
in statistical genetics. We look forward to learning about the
extension of that work to the situations with covariates and to
case-control studies, as well as the extension of the work of
Epstein and Satten (2003) to matched case-control studies.

© 2006 American Statistical Association

Journal of the American Statistical Association
March 2006, Vol. 101, No. 473, Theory and Methods
DOI 10.1198/016214505000000862



Lin and Zeng: Rejoinder

3. RESPONSE TO CHATTERJEE, SPINKA,
CHEN, AND CARROLL

3.1 Case-Control Studies

This group of discussants has done an impressive amount of
work on case-control studies. The original work by Carroll and
colleagues (e.g., Roeder et al. 1996) and the recent work by
Chatterjee and Carroll (2005) provide fundamental insights into
the analysis of case-control data, particularly the relative mer-
its of the retrospective-likelihood versus prospective-likelihood
analyses.

As indicated in our response to SAE, it is necessary to
assume the conditional independence of haplotypes and covari-
ates given genotypes (or the stronger unconditional indepen-
dence), unless one is willing and able to model the relationship
between haplotypes and covariates. It is straightforward to in-
corporate a parametric model for the relationship between hap-
lotypes and covariates into our likelihoods. It is also possible
to account for latent population substructure with the aid of ge-
nomic markers, as we mention in section 5 of our article.

The identifiability results of Spinka, Carroll, and Chatterjee
(2005) seem to be related to those presented in sections
A.4.1 and A.4.2 of our article. In our view, such identifiability
conditions are difficult to verify in practice. Although the inter-
cept term can be identified in some situations, the estimator of
this parameter is likely to be unstable in finite samples. Thus,
we advocate the methods based on the rare-disease assumption.

We agree with Drs. Chatterjee, Spinka, Chen, and Carroll
(CSCC hereinafter) that one can avoid the nonparametric es-
timation of the covariate distribution whether or not the disease
is rare. In fact, the profile likelihood method presented in sec-
tion A.4.4 of our article does not impose the rare-disease as-
sumption. Expression (5) of CSCC appears to be similar to the
second paragraph of our section A.4.5.

Our work covers both the situation of conditional inde-
pendence between haplotypes and covariates given genotypes
and that of unconditional independence under HWE or one-
parameter extensions of HWE. We showed that our estimators
achieve the semiparametric efficiency bounds. It does not seem
possible to obtain more efficient estimators without imposing
additional restrictions.

The prospective methods of Spinka et al. (2005) improve
on those of Zhao et al. (2003). We agree with CSCC that
the prospective methods are more robust than the retrospective
methods against violation of HWE and that of the assumption
of independence between haplotypes and covariates. In con-
trast, the prospective methods can be considerably less efficient.
The choice between the prospective and retrospective methods
would depend on the plausibility of the assumptions.

3.2 Cohort Studies

The work by Chen and colleagues on cohort studies is a novel
application of the results of Prentice (1982) for the proportional
hazards model with covariate measurement error. Because the
relative-risk function shown in (9) of CSCC involves the base-
line hazard function, it is very challenging, both computation-
ally and theoretically, to make inference about the relative-risk
parameters on the basis of (9). For rare diseases, the relative
risk function is free of the baseline hazard function, so that the
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partial likelihood principle can be applied to both cohort stud-
ies and nested case-control studies given consistent estimators
of the haplotype frequencies. The bias and efficiency of the re-
sultant relative risk estimators require further investigation.

The NPMLE is very easy to calculate for the proportional
hazards model. The EM algorithm guarantees an increase in the
likelihood function at each step of the iteration and facilitates
calculation of the information matrix. In the M-step of the EM
algorithm, estimation of the relative risk parameters and the cu-
mulative baseline hazard function is very similar to calculation
of the maximum partial likelihood estimator and the Breslow
estimator. We have not encountered any convergence problem
of the EM algorithm in our extensive simulation studies.

A major advantage of the NPMLE approach is that it can be
applied to the entire class of transformation models, not just the
proportional hazards model. In addition, this approach is ap-
plicable to case-cohort and nested case-control studies whether
environmental factors are measured for the selected sample or
the entire cohort and the estimators continue to be asymptoti-
cally efficient. A manuscript on the NPMLEs for case-cohort
and nested case-control designs is currently under review.

4. RESPONSE TO TZENG AND ROEDER

HWE requires stringent conditions (i.e., random mating, no
viability and/or fertility differential of alleles, no immigration
or emigration, no mutation, and infinite population size), and
is unlikely to hold in human populations. We agree with Drs.
Tzeng and Roeder (TR hereinafter) that population substructure
is the primary source of departure from HWE (assuming that
laboratory errors have been corrected). Population substructure
will cause spurious associations if and only if the risks of dis-
ease vary among subpopulations and the substructure is not ac-
counted for in the analysis. Our work contains HWE as a special
case and enables one to test this assumption. We wish to accom-
modate Hardy—Weinberg disequilibrium because the analysis
of case-control data is highly sensitive to violation of HWE,
and using model (3) greatly reduces the bias even when the dis-
equilibrium does not conform to (3) (see Satten and Epstein
2004). Allowing Hardy—Weinberg disequilibrium adds very lit-
tle complexity to our algorithms.

Although genomewide association studies are on the hori-
zon, most genetic epidemiology studies are concerned with
candidate genes. In those studies, epidemiologists are often
interested in both testing and estimation. Because our meth-
ods are likelihood-based, parameter estimation and hypoth-
esis testing are encompassed within a common framework.
We share TR’s view that testing for the presence of a ge-
netic effect is more realistic than refined estimates of the effect
size. Although our numerical illustrations focus on models that
specify a disease-susceptibility haplotype, our theory and nu-
merical algorithms allow other types of models. Extension to
genomewide association mapping is also possible, as we men-
tioned earlier in our response to Dr. Sabatti.

The relative efficiency of haplotype analysis versus single
marker analysis depends on a number of factors, including the
nature of the SNP—disease association, number and positions of
disease-causing SNPs, extent and strength of linkage disequi-
librium, and selection of markers. Haplotype analysis is likely
to be more powerful than single marker analysis if the causal
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SNPs are not typed or if there are strong interactions of multiple
SNPs on the same chromosome. When there are a large num-
ber of haplotypes, it is sensible to group them by the methods of
Tzeng (2005) and Seltman et al. (2001, 2003). The haplotype-
sharing statistic developed by Tzeng et al. (2003) is a useful
approach for testing the presence of a genetic effect.

As with any type of observational study, it is highly chal-
lenging to come up with the correct or even an approximately
correct model. The small simulation study conducted by TR
demonstrated the potential bias of parameter estimators under
model misspecification and ascertainment bias. Because there
is no bias when the true parameter value is 0, hypothesis testing
still may be appropriate. We certainly agree with TR that re-
fined models will become more useful as the data improve and
become more focused.
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5. RESPONSE TO LI

As mentioned in our response to CSCC, we have already de-
veloped the NPMLE:s for the class of semiparametric transfor-
mation models under the case-cohort and nested case-control
designs. The EM algorithm indeed can be used to estimate all
of the parameters simultaneously. The estimators again achieve
the semiparametric efficiency bounds. Our simulation studies
showed that the case-cohort and nested case-control designs are
highly cost-effective.

Dr. Li described a number of methods for parameterizing ge-
netic variants. He also suggested incorporating known biologi-
cal information into the modeling and analysis. Exploring these
interesting ideas will entail considerable statistical innovation
and yield useful new methods for genetic association analysis.





