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SUMMARY

Estimating the effects of haplotypes on the age of onset of a disease is an important step toward the
discovery of genes that influence complex human diseases. A haplotype is a specific sequence of nu-
cleotides on the same chromosome of an individual and can only be measured indirectly through the
genotype. We consider cohort studies which collect genotype data on a subset of cohort members through
case–cohort or nested case–control sampling. We formulate the effects of haplotypes and possibly time-
varying environmental variables on the age of onset through a broad class of semiparametric regression
models. We construct appropriate nonparametric likelihoods, which involve both finite- and infinite-
dimensional parameters. The corresponding nonparametric maximum likelihood estimators are shown
to be consistent, asymptotically normal, and asymptotically efficient. Consistent variance–covariance es-
timators are provided, and efficient and reliable numerical algorithms are developed. Simulation studies
demonstrate that the asymptotic approximations are accurate in practical settings and that case–cohort and
nested case–control designs are highly cost-effective. An application to a major cardiovascular study is
provided.
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1. INTRODUCTION

Complex human diseases, such as cancer, diabetes, schizophrenia, and coronary heart disease (CHD),
are affected by multiple genetic and environmental factors. Recent sequencing of the human genome and
advances in genotyping technologies have spurred an enormous interest in genetic association studies
which explore the relationships between complex diseases and single nucleotide polymorphisms (SNPs).
SNPs are single-base variations in the genetic code that occur about every 1000 bases along the 3 billion
bases of the human genome. A specific combination of nucleotides at a series of nearby SNPs on the
same chromosome of an individual is called a haplotype. The use of haplotypes can yield more power-
ful tests of genetic associations than the use of single SNPs, especially when the disease-predisposing
SNPs are not directly measured or when there are strong interactions of multiple SNPs on the same
chromosome (Akey et al., 2001; Morris and Kaplan, 2002; Schaid et al., 2002; Zaykin et al., 2002;
Schaid, 2004).

Current genotyping technologies cannot separate the two homologous chromosomes of an individual.
Consequently, only the unphased genotype, i.e. the combination of the two homologous haplotypes, is
directly observable. Several methods have been proposed for inferring individual haplotypes and for esti-
mating haplotype-specific relative risks based on unphased genotype data from case–control studies (see
Schaid, 2004, for a recent review).

Cohort studies offer several advantages over case–control studies (Breslow and Day, 1987, pp. 11–20).
First, the age of onset carries more information about the etiology of a complex disease than the disease
status. Second, selection and information biases inherent in case–control studies can usually be eliminated
in cohort studies. Third, the cohort design enables one to investigate a full range of diseases and related
traits in a single study.

Cohort studies are major undertakings, involving long-term follow-up of many individuals. Fortu-
nately, there are a number of cohort studies that have already been assembled for other purposes and have
repositories of stored specimens that would allow the individuals to be genotyped for candidate genes
of interest. Examples include the Cardiovascular Health Study (Fried et al., 1991), the Women’s Health
Initiative (Johnson et al., 1999), and the Atherosclerosis Risk in Communities (ARIC) Study (The ARIC
Investigators, 1989).

Lin (2004) showed how to perform the Cox regression analysis of haplotype-disease associations with
genotype data in cohort studies. The genotype data are required to be available on all cohort members.
Despite the continuing improvement in genotyping efficiency, it is still prohibitively expensive to geno-
type a large cohort. An efficient compromise is to employ the case–cohort or nested case–control design
(Kalbfleisch and Prentice, 2002, Section 11.4), so that only a subset of the cohort members need to be
genotyped. In fact, the case–cohort design was recently employed in the ARIC study, which is an epi-
demiologic cohort study of 15 792 individuals aged 45–64 years to investigate the etiology of atheroscle-
rosis and other diseases. There is a large body of literature on the Cox regression for case–cohort and
nested case–control designs (see Kulich and Lin, 2004; Nan, 2004; Scheike and Juul, 2004; Scheike and
Martinussen, 2004; and the references therein). None of the existing work, however, deals with the addi-
tional complexity due to haplotype uncertainty.

In the present paper, we study semiparametric estimation of haplotype-disease associations in case–
cohort and nested case–control studies. The fact that the genotype data are available only on a biased
subset of the cohort members poses considerable challenges in making inference about haplotype-disease
associations. We propose a broad class of semiparametric regression models to formulate the effects of
haplotype configurations and possibly time-dependent environment factors on the age of onset of disease.
We derive appropriate likelihoods for these models and establish the asymptotic properties of the resultant
maximum likelihood estimators. We develop efficient and stable numerical algorithms to implement the
corresponding inference procedures. We apply the proposed methods to the aforementioned ARIC study,
which motivated this work.
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2. INFERENCE PROCEDURES

Let T be the time to disease occurrence, H the pair of homologous haplotypes, and G the corresponding
genotype. If we denote the two possible alleles of each SNP by the values 0 versus 1, then H is a pair of
ordered sequences of zeros and ones and G, which is the sum of the two sequences in H , is an ordered
sequence of zeros, ones, and twos. Although we are interested in the association between H and T , we
only observe G directly.

Under case–cohort and nested case–control designs, a subset of individuals is selected for genotyping.
We allow the possibility that some other expensive discrete time-independent covariates, denoted by W ,
are also measured in this subset only. Additional covariates of interest X , possibly time dependent, are
measured on all cohort members.

The time to disease occurrence will be censored if the individual has not developed the disease of
interest by the end of the study or is withdrawn from the study prematurely. Let C denote the potential
censoring time. We assume coarsening at random. That is, the event C = t is independent of (T, H, W )
conditional on {X (s): s � t} and T � t .

Suppose that we have a cohort of n individuals. We collect the data {Yi ,�i , Xi (Yi )} (i = 1, . . . , n),
where Yi = min(Ti , Ci ), �i = I (Ti � Ci ), Xi (t) = {Xi (s): s � t}, and I (·) is the indicator function.
We also measure G and W for a subset of the cohort, which is selected by the case–cohort or nested
case–control sampling.

Under the case–cohort sampling, we randomly select a subcohort from the full cohort. The selection
probabilities depend on the observed event histories and possibly on covariates that are always measured.
Let Ri indicate by the values 1 versus 0 whether the i th individual is selected. We assume missing at
random in that P(Ri = 1|Ti , Ci , Hi , Wi , Xi ) = P(Ri = 1|Yi ,�i , Xi (Yi )). The observed data can be
represented as (Yi ,�i , Xi (Yi ), Ri , Ri Gi , Ri Wi ) (i = 1, . . . , n).

Let S(G) denote the set of all haplotype pairs that are compatible with genotype G. Then the observed-
data likelihood function can be written as

n∏
i=1

⎡⎣ ∑
H∈S(Gi )

λT (Yi |H, Xi (Yi ), Wi )
�i exp

{
−
∫ Yi

0
λT (t |H, Xi (t), Wi )dt

}

×
∏
t�Yi

fX (t)(Xi (t)|Xi (s), s < t, Wi , H)P(Wi |H)P(H)

⎤⎦Ri

×
⎡⎣∑

W

∑
H

λT (Yi |H, Xi (Yi ), W )�i exp

{
−
∫ Yi

0
λT (t |H, Xi (t), W )dt

}

×
∏
t�Yi

fX (t)(Xi (t)|Xi (s), s < t, W, H)P(W |H)P(H)

⎤⎦1−Ri

× λC (Yi |Xi (Yi ))
1−�i exp

{
−
∫ Yi

0
λC (t |Xi (t))dt

}
×P(Ri = 1|Yi ,�i , Xi (Yi ))

Ri P(Ri = 0|Yi ,�i , Xi (Yi ))
1−Ri ,

where λT and λC pertain to the conditional hazard functions of T and C , respectively, and fX (t) pertains
to the conditional density of X (t). Thus, the observed-data likelihood function concerning the distribution
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of T given (H, X, W ) is proportional to

n∏
i=1

⎡⎣ ∑
H∈S(Gi )

λT (Yi |H, Xi (Yi ), Wi )
�i exp

{
−
∫ Yi

0
λT (t |H, Xi (t), Wi )dt

}

× f (Xi (Yi )|Wi , H)P(Wi |H)P(H)

⎤⎦Ri [∑
W

∑
H

λT (Yi |H, Xi (Yi ), W )�i

× exp

{
−
∫ Yi

0
λT (t |H, Xi (t), W )dt

}
f (Xi (Yi )|W, H)P(W |H)P(H)

]1−Ri

, (2.1)

where f is the conditional density of X(t).
Under the nested case–control sampling, a small number of the individuals who are at risk at the

time of disease occurrence of a case are selected for genotyping. The probability of selection at time t
for an individual may depend on the observed past history D(t). The observed data can be represented
as {Yi ,�i , Xi (Yi ), Si (Yi ), Si (Yi )Gi , Si (Yi )Wi } (i = 1, . . . , n), where Si (t) = {Si (s): s � t} and Si (t)
indicates whether the i th individual is selected for genotyping at time t .

To motivate the likelihood construction, we pretend that all the random variables are discrete. Then
the observed-data likelihood is

n∏
i=1

[∏
t

{ fX (t)(Xi (t)|Di (t))P(Ti = t |Di (t))P(Ci > t |Di (t))P(Wi , Gi |Ti = t,Di (t))
Si (t)}�i I (Yi =t)

×
∏

t

{ fX (t)(Xi (t)|Di (t))P(Ci = t |Di (t))P(Ti > t |Di (t))P(Wi , Gi |Ti > t,Di (t))
Si (t)}(1−�i )I (Yi =t)

×
∏

t

{P(Ci > t |Di (t))P(Ti > t |Di (t))P(Wi , Gi |Ti > t,Di (t))
Si (t)}I (Yi >t)

×
∏

t

P(Si (t) = 1|Di (t), Xi (t))
Si (t)I (Yi�t){1 − P(Si (t) = 1|Di (t), Xi (t))}{1−Si (t)}I (Yi�t)

]
. (2.2)

If the i th individual is never selected for genotyping, i.e. Si (t) = 0 for all t � Yi , then �i = 0 and Di (t)
only contains the information of Ti � t and Xi (t), so the likelihood contribution from this individual is
the same as the likelihood of (Yi ,�i , Xi (Yi )). If the i th individual is selected, i.e. Si (t) = 1 for some
t0 � Yi , then Di (t) contains the information of Ti � t and Xi (t) for t < t0 and becomes the information
of Ti � t , Gi , Wi , and Xi (t) for t � t0, so the contribution from this individual to (2.2) is the same as
the likelihood of (Yi ,�i , Gi , Wi , Xi (Yi )). Thus, the likelihood function concerning the distribution of T
given (H, W, X) is exactly the same as (2.1), in which Ri ≡ max{Si (t): t � Yi } indicates whether the i th
individual is ever selected for genotyping.

REMARK 2.1 In the above derivation, the sampling is assumed to be independent among individuals. We
may relax this assumption by allowing the sampling at time t to depend on the observed history at t of all
individuals so that sampling without replacement can be accommodated. The likelihood function remains
the same.

The conditional hazard function λT (t |H, X(t), W ) represents the effects of the haplotype pair and
environmental factors on the risk of disease, which can be formulated by a variety of parametric and
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semiparametric models. We propose the following class of semiparametric transformation models in terms
of the cumulative hazard function:

�T (t |H, X(t), W ) = Q

(∫ t

0
eβTZ(H,X (s),W )d�(s)

)
, (2.3)

where �(t) is an unknown increasing function with �(0) = 0, Z(H, X (t), W ) is a specified function
of H , X (t), and W , and Q is a three-time differentiable transformation with Q(0) = 0 and Q′(x) > 0.
Here and in the sequel, g′(x) = dg(x)/dx and g′′(x) = d2g(x)/dx2. We may use the class of Box–
Cox transformations Q(x) = {(1 + x)r − 1}/r (r > 0) or the class of logarithmic transformations
Q(x) = r1 log(1 + r2x) (r1 > 0, r2 > 0). The choices of Q(x) = x and log(1 + x) yield the proportional
hazards and proportional odds models, respectively.

Nonidentifiability arises if the joint distribution of the haplotype pair is totally unrestricted. Lin (2004)
assumed Hardy–Weinberg equilibrium such that P(H = (hk, hl)) = πkπl (k, l = 1, . . . , K ), where πk is
the marginal probability that the haplotype is hk and K is the number of possible haplotypes. We consider
the following one-parameter extension:

P(H = (hk, hl)) = ρπkδkl + (1 − ρ)πkπl , k, l = 1, . . . , K , (2.4)

where δkl = 1 if k = l and 0 otherwise, and ρ is the inbreeding coefficient. Although the actual disequi-
librium may not conform exactly to (2.4), this extension allows more robust inference than the standard
Hardy–Weinberg equilibrium assumption.

Under (2.3) and (2.4), the observed-data likelihood function concerning the parameters of interest
θ ≡ (β, ρ, π1, . . . , πK ) and � takes the form

n∏
i=1

⎡⎣ ∑
H=(hk ,hl )∈S(Gi )

{
�′(Yi )e

βTZ(H,Xi (Yi ),Wi )Q′
(∫ Yi

0
eβTZ(H,Xi (s),Wi )d�(s)

)}�i

× exp

{
−Q

(∫ Yi

0
eβTZ(H,Xi (s),Wi )d�(s)

)}
f (Xi (Yi )|Wi , H)P(Wi |H) {ρπkδkl + (1 − ρ)πkπl}

⎤⎦Ri

×
⎡⎣∑

W

∑
H=(hk ,hl )

{
�′(Yi )e

βTZ(H,Xi (Yi ),W )Q′
(∫ Yi

0
eβTZ(H,Xi (s),W )d�(s)

)}�i

× exp

{
−Q

(∫ Yi

0
eβTZ(H,Xi (s),W )d�(s)

)}
f (Xi (Yi )|W, H)P(W |H) {ρπkδkl + (1 − ρ)πkπl}

⎤⎦1−Ri

.

(2.5)

Simplifications arise under certain conditions. If there is no W , then (2.5) will not contain any term
involving W . If X(t) is independent of (W, H), then the conditional density of X(Y ) can be dropped out
of (2.5) due to factorization. In the sequel, we focus on the most common situation in which W does not
exist and X is independent of H .

We propose to estimate θ and � by the nonparametric maximum likelihood method. The maximum of
(2.5) does not exist if � is restricted to be absolutely continuous. Thus, we allow � to be right continuous
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and maximize the following function:

Ln(θ,�) =
n∏

i=1

⎛⎝ ∑
H=(hk ,hl )∈S(Gi )

[
�{Yi }eβTZ(H,Xi (Yi ))Q′

(∫ Yi

0
eβTZ(H,Xi (s))d�(s)

)]�i

× exp

{
−Q

(∫ Yi

0
eβTZ(H,Xi (s))d�(s)

)}
{ρπkδkl + (1 − ρ)πkπl}

⎞⎠Ri

×
⎛⎝ ∑

H=(hk ,hl )

[
�{Yi }eβTZ(H,Xi (Yi ))Q′

(∫ Yi

0
eβTZ(H,Xi (s))d�(s)

)]�i

× exp

{
−Q

(∫ Yi

0
eβTZ(H,Xi (s))d�(s)

)}
{ρπkδkl + (1 − ρ)πkπl}

⎞⎠1−Ri

, (2.6)

where �{Yi } denotes the jump size of � at Yi . The maximization is tantamount to maximizing (2.6) over
θ and the �{Yi } associated with �i = 1 and can be carried out through the EM algorithm described in
Appendix A.

Let θ0 and �0 denote the true values of θ and �, and θ̂n and �̂n the maximum likelihood estimators.
We show in Appendix B that n1/2(θ̂n − θ0, �̂n − �0) weakly converges to a zero-mean Gaussian process
and that the limiting covariance matrix of n1/2(θ̂n − θ0) achieves the semiparametric efficiency bound
(Bickel et al., 1993, Chapter 3). We can estimate the limiting covariance function of n1/2(θ̂n − θ0, �̂n −
�0) by regarding (2.6) as a parametric likelihood with θ and the �{Yi } associated with �i = 1 as the
parameters and inverting the observed information matrix for those parameters. We can also estimate the
covariance matrix of n1/2(θ̂n − θ0) by the profile likelihood method (Murphy and van der Vaart, 2000).
The profile log-likelihood function can be calculated via the EM algorithm, in which θ is held fixed.

3. NUMERICAL RESULTS

3.1 ARIC study

We are currently evaluating common genetic polymorphisms which, in combination with exposure to
tobacco smoking, may affect the risk of atherosclerosis and its clinical sequelae. An average of six poly-
morphisms, selected on the basis of their prevalence and functional significance, expression in relevant
tissues, evaluation in previous studies, and biological plausibility within 19 genes involved in activation,
detoxification, oxidative stress, and DNA repair pathways, are being evaluated in a well-characterized,
bi-ethnic cohort of 15 792 men and women under active follow-up since 1987–1989 as part of the ARIC
study. Four endpoints quantifying subclinical atherosclerosis and validated clinical atherosclerotic events
are being studied under the case–cohort design.

So far, we have genotyped five SNPs in XRCC1, a major base excision repair gene. We considered
all incident CHD cases occurring between 1987 and 2001. A subcohort was selected by stratified random
sampling with different proportions of participants drawn from eight age–sex–race strata. Genotyping was
conducted using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Cigarette
smoking history was obtained through an interviewer-administered questionnaire.

We focus on the Caucasian sample, which consists of 11 526 individuals, 774 cases, and a subcohort
of 698 controls. Cigarette smoking status is known for 11 519 participants. The five SNPs are missing in
12%, 6%, 10%, 12%, and 6% of the case–cohort sample. The minor allele frequencies are 0.34, 0.40, 0.37,
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0.41, and 0.36. There are nine haplotypes with estimated frequencies of higher than 0.5% in the sample.
The frequencies for haplotypes (00100, 00110, 01001, 01100, 01110, 10110, 11001, 11100, 11110) are
estimated at 0.012, 0.158, 0.096, 0.063, 0.012, 0.227, 0.276, 0.148, and 0.008, and the inbreeding coeffi-
cient is estimated at 0.025.

We fit separate models comparing each haplotype in turn with all others. Each model includes haplo-
type, smoking status (ever smoke = 1, never smoke = 0), two dummy variables contrasting Minnesota
and Washington to North Carolina, gender and age at the baseline, as well as the interaction between
smoking and haplotype. The effects of the haplotype pair are assumed to be additive (Lin, 2004). The
results for the estimation of the haplotype effects and haplotype–smoking interactions under these models
are summarized in Table 1. The individuals with haplotype 00110 appear to have a significantly higher risk
of CHD as compared to the individuals without this haplotype. No estimate was obtained for haplotype
00100 due to numerical instability. There is no convincing evidence for interactions.

We also compare haplotype 00110 with the other five common haplotypes in a single model, and
the estimation results are shown in Table 2. There is some evidence that haplotype 00110 is associated
with higher risk of CHD than all other common haplotypes, especially haplotypes 01001, 10110, and
11001. The likelihood ratio statistic for testing the global null hypothesis of no haplotype effects and no
haplotype–smoking interactions has an observed χ2 value of 15.45 with 10 degrees of freedom, yielding
a p-value of 0.116.

3.2 Simulation studies

We conducted extensive simulation studies to examine the finite-sample properties of the proposed meth-
ods. We considered five SNPs and generated genotypes according to the observed haplotype distribu-
tion of the ARIC data. We focused on the effect of haplotype 01100 and its interaction with a Bernoulli

Table 1. Estimates of haplotype effects and haplotype–smoking interactions for the ARIC study based on
separate models

Haplotype Parameter Estimate Standard error p-value

00110 Main effect 0.237 0.105 0.024
Interaction −0.010 0.119 0.931

01001 Main effect −0.295 0.239 0.218
Interaction 0.003 0.273 0.992

01100 Main effect 0.124 0.243 0.610
Interaction −0.404 0.276 0.143

01110 Main effect 0.506 0.586 0.388
Interaction 0.217 0.650 0.739

10110 Main effect −0.078 0.143 0.585
Interaction 0.102 0.171 0.551

11001 Main effect 0.165 0.146 0.259
Interaction 0.048 0.177 0.786

11100 Main effect 0.029 0.166 0.863
Interaction −0.136 0.188 0.469

11110 Main effect 0.515 0.468 0.271
Interaction 0.715 0.518 0.167

Note: Each haplotype is compared to all others. The analysis adjusts for
geographical location, gender, and age.
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Table 2. Estimates of haplotype effects and haplotype–smoking interactions for the ARIC study based on
a full model with haplotype 00110 as the reference

Parameter Estimate Standard error p-value

Haplotype 01001 −0.459 0.317 0.147
Haplotype 01100 −0.051 0.284 0.857
Haplotype 10110 −0.273 0.206 0.186
Haplotype 11001 −0.288 0.208 0.165
Haplotype 11100 −0.183 0.185 0.323
Smoking status 0.548 0.196 0.005
Minnesota −0.129 0.077 0.093
Washington 0.214 0.071 0.003
Age 0.061 0.005 <0.001
Male 1.09 0.069 <0.001
01001× smoking 0.053 0.358 0.883
01100× smoking −0.384 0.330 0.245
10110× smoking 0.052 0.235 0.826
11001× smoking −0.018 0.231 0.936
11100× smoking −0.103 0.205 0.616

environmental variable with 0.6 success probability, mimicking cigarette smoking in the ARIC data. We
generated time to disease occurrence from either the proportional hazards model or the proportional odds
model with baseline hazard function of 0.14t and with additive haplotype effects. The individuals were
selected for genotyping by case–cohort or nested case–control sampling with two controls per case. The
proportions of missingness for the five SNPs among those selected for genotyping were the same as in the
ARIC study. We generated censoring times from the uniform [0, 5] distribution truncated at 1. Approxi-
mately 90% of the observations were censored.

Table 3 summarizes the results of the simulation studies for n = 2000 and with various combinations
of parameter values. The parameter estimators seem to have little bias. The profile likelihood method
provides accurate estimators of the variances. The Wald tests have proper type I error rates, and the
confidence intervals have reasonable coverage probabilities. The relative efficiencies of the case–cohort
and nested case–control designs are generally between 80% and 90% for estimating haplotype effects
and haplotype–environment interactions and over 95% for estimating environmental effects. Thus, these
designs are highly cost-effective since only 30% of the entire cohort is genotyped. The case–cohort design
appears to be slightly more efficient than the nested case–control design; however, 2–4% of selected
controls became cases later on, so the total number of individuals genotyped is slightly smaller under the
nested case–control design than under the case–cohort design.

4. REMARKS

The results presented in Section 3.1 represent some preliminary findings from a major ongoing investi-
gation. We are currently genotyping additional SNPs in the XRCC1 gene and examining 18 other genes
using the methods proposed here. The full results will be reported elsewhere.

In practice, the true model is unknown. Thus, one will need to explore several possible models. Since
the proposed methods are likelihood based, we can apply model selection criteria such as the Akaike
information criterion (AIC) (Akaike, 1985) to determine the best model. Our experience shows that AIC
performs well in this kind of setting (see Lin, 2004).

It is assumed in (2.6) that there is no W and X is independent of H . This assumption is reasonable in
most genetic studies. It is easy to remove this assumption if X is time independent and discrete because
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Table 3. Summary statistics for the simulation studies†

Parameter Case–cohort design Nested case–control design

Bias SE SEE CP PW RE Bias SE SEE CP PW RE

Proportional hazards model

βh = 0 −0.045 0.371 0.371 0.967 0.033 0.849 −0.042 0.379 0.373 0.960 0.040 0.803
βx = 0.5 0.008 0.217 0.217 0.955 0.644 0.963 0.008 0.217 0.218 0.954 0.654 0.960
βxh = 0 0.034 0.427 0.424 0.965 0.035 0.889 0.037 0.432 0.425 0.960 0.040 0.858

βh = 0.5 −0.014 0.274 0.272 0.957 0.463 0.812 −0.011 0.280 0.274 0.954 0.463 0.779
βx = 0.5 0.009 0.213 0.208 0.950 0.686 0.958 0.009 0.213 0.208 0.948 0.691 0.962
βxh = 0 0.013 0.320 0.317 0.956 0.044 0.855 0.012 0.321 0.317 0.955 0.045 0.850

βh = 0 −0.045 0.367 0.364 0.964 0.036 0.865 −0.041 0.371 0.365 0.962 0.038 0.844
βx = 0.5 0.009 0.216 0.213 0.951 0.674 0.961 0.009 0.216 0.213 0.949 0.674 0.961
βxh = 0.5 0.045 0.403 0.399 0.961 0.228 0.881 0.044 0.404 0.399 0.961 0.229 0.874

βh = 0.5 −0.015 0.271 0.260 0.947 0.490 0.831 −0.014 0.277 0.261 0.944 0.490 0.793
βx = 0.5 0.009 0.211 0.198 0.938 0.716 0.957 0.009 0.212 0.198 0.934 0.714 0.949
βxh = 0.5 0.019 0.303 0.300 0.957 0.395 0.848 0.019 0.308 0.301 0.952 0.398 0.825

Proportional odds model

βh = 0 −0.047 0.389 0.386 0.967 0.033 0.847 −0.043 0.389 0.389 0.962 0.038 0.830
βx = 0.5 0.008 0.228 0.226 0.951 0.615 0.966 0.008 0.229 0.226 0.952 0.614 0.962
βxh = 0 0.037 0.449 0.447 0.965 0.035 0.890 0.037 0.450 0.448 0.966 0.034 0.877

βh = 0.5 −0.015 0.299 0.295 0.955 0.415 0.810 −0.013 0.307 0.297 0.948 0.419 0.769
βx = 0.5 0.009 0.225 0.219 0.945 0.638 0.961 0.010 0.227 0.219 0.946 0.641 0.943
βxh = 0 0.015 0.352 0.347 0.955 0.045 0.867 0.014 0.358 0.348 0.950 0.050 0.837

βh = 0 −0.047 0.385 0.380 0.963 0.036 0.865 −0.045 0.392 0.382 0.961 0.039 0.830
βx = 0.5 0.008 0.227 0.222 0.947 0.628 0.967 0.009 0.228 0.222 0.946 0.635 0.962
βxh = 0.5 0.048 0.427 0.423 0.965 0.206 0.890 0.048 0.434 0.425 0.960 0.210 0.860

βh = 0.5 −0.016 0.294 0.287 0.953 0.431 0.833 −0.014 0.301 0.289 0.947 0.427 0.800
βx = 0.5 0.009 0.225 0.216 0.942 0.648 0.959 0.009 0.225 0.215 0.939 0.651 0.953
βxh = 0.5 0.021 0.339 0.335 0.956 0.334 0.851 0.020 0.341 0.336 0.950 0.333 0.841

†βh , βx , and βxh pertain to haplotype effect, environmental effect, and haplotype–environment interaction, respectively. Bias and SE
denote the bias and standard error of parameter estimator, SEE is the mean of standard error estimator, CP is the coverage probability
of 95% confidence interval, PW is the power for testing zero parameter, and RE is the efficiency relative to full-cohort design. Each
entry is based on 5000 repetitions.

then the general likelihood function given in (2.5) just involves some discrete probability functions. If
X contains one or two time-independent continuous components, we can still estimate the conditional
density function of X nonparametrically.

We have assumed that W is discrete and time independent. If W is continuous and possibly time de-
pendent but X is discrete and time independent, we will replace f (X(Y )|W, H)P(W |H) in (2.5) with
f (W (Y )|X, H)P(X |H). However, if both X and W are continuous, it is necessary to parameterize the
distribution; nevertheless, nonparametric estimation is possible if X and W have one continuous compo-
nent each.

If one is not interested in haplotypes, the likelihood given in (2.5) simplifies greatly. There will be no
summation over H , and H will disappear from all expressions. The theoretical results will continue to
hold, and the EM algorithm will still apply, although the parameters will not include ρ and πk . Scheike
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and Juul (2004) and Scheike and Martinussen (2004) studied maximum likelihood estimation in the pro-
portional hazards model under case–cohort and nested case–control designs (without the additional
complexities due to haplotype uncertainty and missing genotype data) but did not provide theoretical
justifications for the asymptotic results. The asymptotic theory derived in the present paper covers those
situations. Note that the aforementioned challenge in dealing with continuous covariates still exists even
when one is not interested in haplotypes. In fact, this challenge tends to be less severe in genetic studies
because genes are discrete and are usually independent of other covariates.

This paper is focused on case–cohort and nested case–control designs, while the recent paper of Lin
and Zeng (2006) is concerned with other commonly used study designs. A nontechnical description of
the methods developed in the two papers was provided by Lin et al. (2005). The software is available at
http://www.bios.unc.edu/∼lin.
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APPENDIX A

EM algorithm

Write H = BQ1 + (1 − B)Q2, where B is a Bernoulli variable with success probability ρ and Q1 and
Q2 are discrete variables with P(Q1 = (hk, hk)) = πk and P(Q2 = (hk, hl)) = πkπl (k, l = 1, . . . , K ).
We introduce a subject-specific frailty ξ with density φ(ξ) such that

e−Q(x) =
∫ ∞

0
e−xtφ(t)dt . (A.1)

Then the observed-data likelihood function under the transformation model is equivalent to the likeli-
hood function under the proportional hazards frailty model: the conditional hazard function of T given
(B, Q1, Q2, ξ) is λ(t)ξ exp{βTZ(BQ1 + (1− B)Q2, X (t))}. By treating (B, Q1, Q2, ξ) as missing data,
we obtain the following complete-data likelihood function:

n∏
i=1

[
�{Yi }ξi e

βTZ(Bi Q1i +(1−Bi )Q2i ,Xi (Yi ))
]�i

exp

{
−ξi

∫ Yi

0
eβTZ(Bi Q1i +(1−Bi )Q2i ,Xi (s))d�(s)

}

× ρBi (1 − ρ)1−Bi

K∏
k=1

π
Bi I (Q1i =(hk ,hk ))
k

K∏
k,l=1

(πkπl)
(1−Bi )I (Q2i =(hk ,hl )). (A.2)

In the M-step of the EM algorithm, we maximize the conditional expectation of the logarithm of
(A.2) given the observed data. Let Êi [·] denote the conditional expectation given the i th observation
(Yi , Xi ,�i , Ri , Ri Gi ). Then ρ and πk are updated by the following formulas:

ρ = n−1
n∑

i=1

Êi [Bi ],

πk = n−1
n∑

i=1

Êi

[
Bi I (Q1i = (hk, hk)) + 2

K∑
l=1

(1 − Bi )I (Q2i = (hk, hl))

]
.

http://www.bios.unc.edu/~lin
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In addition, we update β by solving the following equation:

n∑
i=1

�i

⎛⎝Êi [Z(Hi , Xi (Yi ))] −
∑n

j=1 I (Y j � Yi )̂E j

[
ξ jZ(Hj , X j (Yi ))eβTZ(Hj ,X j (Yi ))

]
∑n

j=1 I (Y j � Yi )̂E j

[
ξ j eβTZ(Hj ,X j (Yi ))

]
⎞⎠ = 0, (A.3)

and update � by the step function with jump sizes

�{Yi } = �i

/ n∑
j=1

I (Y j � Yi )̂E j

[
ξ j e

βTZ(Hj ,X j (Yi ))
]
, i = 1, . . . , n. (A.4)

Note that (A.3) and (A.4) are reminiscent of the partial likelihood (Cox, 1972) score equation and the
Breslow (1972) estimator.

In light of (A.3) and (A.4), we calculate the conditional expectations in the form of E[ξiω(Bi , Q1i ,
Q2i )|Yi , Xi ,�i , Ri , Ri Gi ] in the E-step. We can avoid numerical integration over ξi in these calculations.
Define Ui (b, q1, q2) = ∫ Yi

0 eβTZ(bq1+(1−b)q2,Xi (s))d�(s). In view of (A.2), the conditional density of ξ

given (Bi , Q1i , Q2i ) and (Yi , Xi ,�i , Ri , Ri Gi ) is proportional to ξ�i e−ξUi (Bi ,Q1i ,Q2i )φ(ξ), so that

E[ξi |Bi , Q1i , Q2i , Yi , Xi ,�i , Ri , Ri Gi ]

=
∫

ξ1+�i e−ξUi (Bi ,Q1i ,Q2i )φ(ξ)dξ

/∫
ξ�i e−ξUi (Bi ,Q1i ,Q2i )φ(ξ)dξ .

By differentiating (A.1) with respect to x , we obtain

e−Q(x)Q′(x) =
∫

ξe−ξ xφ(ξ)dξ, −e−Q(x){Q′′(x) − Q′(x)2} =
∫

ξ2e−ξ xφ(ξ)dξ .

It follows that

E[ξi |Bi , Q1i , Q2i , Yi , Xi ,�i , Ri , Ri Gi ] = Q′(Ui (Bi , Q1i , Q2i )) − �i
Q′′(Ui (Bi , Q1i , Q2i ))

Q′(Ui (Bi , Q1i , Q2i ))
.

Consequently,

E[ξiω(Bi , Q1i , Q2i )|Yi , Xi ,�i , Ri , Ri Gi ] = E

[{
Q′(Ui (Bi , Q1i , Q2i )) − �i

Q′′(Ui (Bi , Q1i , Q2i ))

Q′(Ui (Bi , Q1i , Q2i ))

}

× ω(Bi , Q1i , Q2i )

∣∣∣∣Yi , Xi ,�i , Ri , Ri Gi

]
.

According to (A.2), the conditional density of (Bi , Q1i , Q2i ) given the observed data is proportional to
gi (Bi , Q1i , Q2i ), where

gi (b, q1, q2) =
{

eβTZ(bq1+(1−b)q2,Xi (Yi ))Q′
(∫ Yi

0
eβTZ(bq1+(1−b)q2,Xi (s))d�(s)

)}�i

× exp

{
−Q

(∫ Yi

0
eβTZ(bq1+(1−b)q2,Xi (s))d�(s)

)}

× ρb(1 − ρ)1−b
K∏

k=1

π
bI (q1=(hk ,hk ))
k

K∏
k,l=1

(πkπl)
(1−b)I (q2=(hk ,hl )).
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Thus, E[ξiω(Bi , Q1i , Q2i )|Yi , Xi ,�i , Ri , Ri Gi ] is equal to∑
bq1+(1−b)q2∈S(Gi )

gi (b, q1, q2)ω(b, q1, q2){Q′(Ui (b, q1, q2))−�i Q′′(Ui (b, q1, q2))/Q′(Ui (b, q1, q2))}∑
bq1+(1−b)q2∈S(Gi )

gi (b, q1, q2)

for individuals with Ri = 1 and is equal to∑
b,q1,q2

gi (b, q1, q2)ω(b, q1, q2){Q′(Ui (b, q1, q2)) − �i Q′′(Ui (b, q1, q2))/Q′(Ui (b, q1, q2))}∑
b,q1,q2

gi (b, q1, q2)

for individuals with Ri = 0.

APPENDIX B

Asymptotic results

We impose the following conditions:

(C.1) Both X (t) and Z(H, X (t)) have bounded total variations in [0, τ ] with probability one, where τ
corresponds to the end of the study.

(C.2) There exists a positive constant a such that with probability one, P(R = 1|Y,�, X(Y )) > a and
P(C � τ |X(τ )) = P(C = τ |X(τ )) > a.

(C.3) If µ1(t)+βT
1 Z((hk, hk), X (t)) = µ2(t)+βT

2 Z((hk, hk), X (t)) for t ∈ [0, τ ] and k = 1, . . . , K
with probability one, then β1 = β2 and µ1(t) = µ2(t).

(C.4) |β0| � c0 for some known constant c0, and λ0(t) is continuous and positive for t ∈ [0, τ ].
(C.5) Q(x) satisfies one of the two conditions:

(C.5.1) for any positive constant c0, lim supx→∞ {Q(c0x)}−1 log{x supy�x Q′(y)} = 0,
(C.5.2) there exist some constants r1, r2 > 0 such that Q(x) = r1 log(1 + r2x).

We state the asymptotic results in three theorems. The above conditions are assumed to hold in the
theorems. The first theorem states the consistency, weak convergence, and asymptotic efficiency.

THEOREM B.1 With probability one,

|θ̂n − θ0| + sup
t∈[0,τ ]

|�̂n(t) − �0(t)| → 0.

In addition, n1/2(θ̂n − θ0, �̂n −�0) weakly converges to a zero-mean Gaussian process in Rd × l∞[0, τ ],
where d is the dimension of θ and l∞[0, τ ] is a normed space consisting of all the bounded functions
and the norm is defined as the supremum norm on [0, τ ]. Furthermore, the limiting covariance matrix of
n1/2(θ̂n − θ0) achieves the semiparametric efficiency bound.

The second theorem justifies the estimation of the limiting covariance function of n1/2(θ̂n − θ0,
�̂n − �0) by the inverse information matrix.

THEOREM B.2 Let V (h1, h2) be the limiting variance of the random variable n1/2
[
hT

1 (θ̂n − θ0) +∫ τ
0 h2(t)d{̂�n(t) − �0(t)}

]
, where h1 is a d-vector and h2 is a bounded function. The estimator nhT

n I−1
n

hn → V (h1, h2) uniformly in (h1, h2) in probability, where hn consists of h1 and the values of h2(Yi )
associated with �i = 1, and In is the negative Hessian matrix of log Ln(θ̂n, �̂n) with respect to θ and the
�{Yi } associated with �i = 1.
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The last theorem justifies the use of the profile log-likelihood pln(θ) ≡ max� log Ln(θ,�) in esti-
mating the limiting covariance matrix of n1/2(θ̂n − θ0).

THEOREM B.3 For any d-vector h1 with norm one,

− pln(θ̂n + εnh1) − 2pln(θ̂n) + pln(θ̂n − εnh1)

nε2
n

→ hT
1 �−1h1

in probability, where εn = O(n−1/2) and � is the limiting covariance matrix of n1/2(θ̂n − θ0).

The proofs of these theorems involve advanced mathematical tools from empirical process theory
(van der Vaart and Wellner, 1996) and semiparametric efficiency theory (Bickel et al., 1993). We outline
here the main arguments. The detailed proofs are available from the authors.

Proof of Theorem B.1. We first prove the consistency under Condition (C.5.1). The proof consists of three
steps.

Step 1: We show the existence of (θ̂n, �̂n) or equivalently the finiteness of the jump sizes of �̂n . The
logarithm of (2.6), denoted by ln(θ,�), is bounded by

O(1) +
n∑

i=1

(
�i log

[
�{Yi } sup

y�eM�(Yi )

Q′(y)

]
− Q(e−M�(Yi ))

)
, (B.1)

where O(1) denotes some positive constant and M is a constant satisfying

e−M � inf
t,β,H,X

exp{βTZ(H, X (t))} � sup
t,β,H,X

exp{βTZ(H, X (t))} � eM .

Such an M exists under Conditions (C.1) and (C.4). It then follows from Condition (C.5.1) that (B.1) will
diverge if �{Yi } is infinite for some i .

Step 2: We show that with probability one, �̂n is bounded for any n. Let �n = �̂n/ψn , where ψn =
�̂n(τ ). Clearly,

0 � n−1{ln(θ̂n, �̂n) − ln(θ̂n,�n)} � O(1) + n−1
n∑

i=1

�i log

{
ψn sup

y�eMψn

Q′(y)

}

− n−1
n∑

i=1

(1 − �i )I (Yi = τ)Q(e−Mψn). (B.2)

Since P(� = 0, Y = τ) > 0, (B.2) will be negative if ψn diverges. Thus, ψn is bounded, which implies
that �̂n is bounded.

Step 3: By Helly’s selection theorem, we can choose a subsequence such that θ̂n → θ∗ and �̂n → �∗
with probability one. It remains to show that θ∗ = θ0 and �∗ = �0. Note that

�̂n{Yi } = �i/{nφn(Yi ; θ̂n, �̂n)}, (B.3)



Efficient semiparametric estimation of haplotype-disease associations 499

where

φn(t ; θ,�) = n−1
n∑

i=1

Ri
∑

H∈S(Gi )
D1i (θ,�)D2i (t ; θ, �)∑

H∈S(Gi )
D1i (θ,�)

+ n−1
n∑

i=1

(1 − Ri )
∑

H D1i (θ,�)D2i (t ; θ, �)∑
H D1i (θ,�)

,

D1i (θ,�) =
{

eβTZ(H,Xi (Yi ))Q′
(∫ Yi

0
eβTZ(H,Xi (s))d�(s)

)}�i

× exp

{
−Q

(∫ Yi

0
eβTZ(H,Xi (s))d�(s)

)}
{ρπkδkl + (1 − ρ)πkπl} ,

and

D2i (t ; θ,�) =
�i Q′′

(∫ Yi
0 eβTZ(H,Xi (s))d�(s)

)
eβTZ(H,Xi (t)) I (Yi � t)

Q′
(∫ Yi

0 eβTZ(H,Xi (s))d�(s)
)

− Q′
(∫ Yi

0
eβTZ(H,Xi (s))d�(s)

)
eβTZ(H,Xi (t)) I (Yi � t).

In view of (B.3), we construct another step function �̃n with �̃n{Yi } = �i/ {nφn(Yi ; θ0,�0)} . By the
Glivenko–Cantelli theorem, �̃n uniformly converges to �0, and �̂n is absolutely continuous with re-
spect to �̃n with the derivative converging uniformly to d�∗(t)/d�0(t). Since n−1{ln(θ̂n, �̂n) − ln(θ0,
�̃n)} � 0, the Kullback–Leibler information of (θ∗,�∗) with respect to (θ0,�0) is non-negative, so that
(2.6) has the same value almost surely whether (θ,�) = (θ∗,�∗) or (θ0,�0). Setting n = 1, Gi = 2hk ,
Ri = 1, and �i = 1 and integrating Yi from y to τ , we obtain[

exp

{
−Q

(∫ y

0
eβ∗TZ((hk ,hk ),X (s))d�∗(s)

)}
− exp

{
−Q

(∫ τ

0
eβ∗TZ((hk ,hk ),X (s))d�∗(s)

)}]

×
{
ρ∗π∗

k + (1 − ρ∗)π∗
k

2
}

=
[

exp

{
−Q

(∫ y

0
eβ0

TZ((hk ,hk ),X (s))d�0(s)

)}

− exp

{
−Q

(∫ τ

0
eβ0

TZ((hk ,hk ),X (s))d�0(s)

)}]
{ρ0π0k + (1 − ρ0)π

2
0k}.

By comparing this equation with the one obtained from (2.6) with n = 1, Gi = 2hk , Ri = 1,�i = 0, and
Yi = τ , we have

exp

{
−Q

(∫ y

0
eβ∗TZ((hk ,hk ),X (s))d�∗(s)

)}{
ρ∗π∗

k + (1 − ρ∗)π∗
k

2
}

= exp

{
−Q

(∫ y

0
eβ0

TZ((hk ,hk ),X (s))d�0(s)

)}
{ρ0π0k + (1 − ρ0)π

2
0k}.
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The choice of y = 0 yields that ρ∗π∗
k + (1 − ρ∗)π∗

k
2 = ρ0π0k + (1 − ρ0)π

2
0k , which entails that ρ∗ = ρ0

and π∗
k = π0k . In addition,

∫ y
0 eβ∗TZ((hk ,hk ),X (s))d�∗(s) = ∫ y

0 eβ0
TZ((hk ,hk ),X (s))d�0(s), implying that

log λ∗(y) + β∗TZ((hk, hk), X (y)) = log λ0(y) + βT
0 Z((hk, hk), X (y)).

It then follows from Condition (C.6) that β∗ = β0 and �∗ = �0. Hence, θ̂n → θ0 and �̂n → �0 almost
surely. Since �0 is continuous, the weak convergence of �̂n can be strengthened to the convergence
uniformly in [0, τ ].

If Q(·) satisfies Condition (C.5.2) instead of (C.5.1), we need to modify Step 2. It follows from (B.3)
that

n�̂n{Yi } � O(1)n−1
n∑

k=1

I (Yk � Yi )

1 + r2eM�̂n(Yk)
.

Thus,

0 � n−1{ln(θ̂n, �̂n) − ln(θ0,�0)}

� O(1) − O(1)n−1
n∑

i=1

log{1 + r2e−M�̂n(Yi )} − n−1
n∑

i=1

�i log

{
O(1)n−1

n∑
k=1

I (Yk � Yi )

1 + r2eM�̂n(Yk)

}
.

(B.4)

By partitioning [0, τ ] into a sequence of intervals as in Zeng et al. (2005) and examining the two terms on
the right-hand side of (B.4) when Yi lies in each partition, we can show that the right-hand side of (B.4)
is negative if �̂n(τ ) diverges. Thus, �̂n must be bounded.

To derive the asymptotic distribution of (θ̂n, �̂n), we apply Theorem 3.3.1 of van der Vaart and Wellner
(1996) to the score operators for θ̂n and �̂n . Except for the invertibility of the derivative operator of the
score operator, all the conditions in Theorem 3.3.1 can be verified via empirical process theory (see Zeng
et al., 2005). The derivative operator is invertible if the information operator is one-to-one. Thus, we wish
to show that if a score function along the path (θ0 + εh1,�0 + ε

∫
h2(t)d�0) is zero, then h1 = 0 and

h2 = 0. For Ri = 1 and Gi = 2hk , the score equation is

h2(Y ) + hT
1βZ((hk, hk), X (Y ))

+
⎧⎨⎩Q′′

(∫ Y
0 eβT

0 Z((hk ,hk ),X (s))d�0(s)
)

Q′
(∫ Y

0 eβT
0 Z((hk ,hk ),X (s))d�0(s)

) − Q′
(∫ Y

0
eβT

0 Z((hk ,hk ),X (s))d�0(s)

)⎫⎬⎭
×
[∫ Y

0
eβT

0 Z((hk ,hk ),X (s)){h2(s) + hT
1βZ((hk, hk), X (s))}d�0(s)

]
+ {h1ρ(π0k − π2

0k) + h1k(ρ0 + 2(1 − ρ0)π0k)}/(ρ0π0k + (1 − ρ0)π
2
0k) = 0, (B.5)

where (h1β, h1ρ, h1k) are the components of h1 associated with (β0, ρ0, π0k) and
∑

k h1k = 0. Setting
Y = 0 yields that h1ρ = h1k = 0. This result implies that (B.5) is a homogeneous integral equation for
h2(Y ) + hT

βZ((hk, hk), X (Y )), so that h2(Y ) + hT
βZ((hk, hk), X (Y )) = 0. Thus, h2 = 0 and h1β = 0. It

then follows from Theorem 3.3.1 of van der Vaart and Wellner (1996) that n1/2(θ̂n − θ0, �̂n −�0) weakly
converges to a zero-mean Gaussian process. Furthermore, we can use the arguments of Zeng et al. (2005)
to show that θ̂n is asymptotically efficient. �
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Proof of Theorem B.2. This proof follows from the arguments given in the proof of Theorem 3 of Zeng
et al. (2005). The details are omitted. �
Proof of Theorem B.3. We can verify the conditions in Theorem 1 of Murphy and van der Vaart (2000).
In particular, we can construct the least favorable submodel by using the invertibility of the information
operator shown in the proof of Theorem 1. The details are omitted. �
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