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SUMMARY

We present graphical and numerical methods for assessing the adequacy of the logistic regression
model for strati�ed case-control data. The proposed methods are derived from the cumulative sum
of residuals over the covariate or linear predictor. Under the assumed model, the cumulative residual
process converges weakly to a zero-mean Gaussian process whose distribution can be approximated via
Monte Carlo simulation. The observed cumulative residual pattern can then be compared both visually
and analytically to a number of simulated realizations from the approximate null distribution. These
comparisons enable one to examine the functional form of each covariate, the logistic link function as
well as the overall model adequacy. Simulation studies demonstrate that the proposed methods perform
well in practical settings. Illustration with an oesophageal cancer study is provided. Copyright ? 2004
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Case-control studies are routinely conducted to investigate the relationship between exposure
and disease. The statistical analysis of case-control data is typically based on the logistic
regression model, which relates the probability of developing the disease to the exposure
of interest and other risk factors. If one ignores the feature of unequal selection probabilities
of the case-control design and proceeds as if the observations came from a random sample of
the entire population, the standard maximum likelihood method will provide valid inference
for the slope parameters (i.e. log odds ratios), but not for the intercept term [1].
There exist various diagnostic methods for the logistic regression; see Reference [2] for

a review. Speci�cally, Pregibon [3] studied methods for detecting outliers and in�uential
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subjects. Hosmer and Lemeshow [4] developed an overall goodness-of-�t test that employs
a grouping method based on the deciles of the risk. Osius and Rojek [5] derived a large-
sample normal approximation to the Pearson chi-square statistic. Stukel [6] developed a two
degree-of-freedom test that assesses the tails of the logistic regression model.
The above tests were developed for independent and identically distributed data, but they

can also be applied to case-control data [7]. Recently, two goodness-of-�t tests have been
derived speci�cally for case-control studies: Qin and Zhang [8] proposed a Kolmogorov–
Smirnov-type statistic, and Zhang [9] proposed a chi-square-type statistic.
Although the existing tests are useful for assessing the goodness-of-�t of the model, they

do not provide insights into the nature of model misspeci�cation. Furthermore, there does not
exist any method for assessing the adequacy of the functional form of a covariate, which is
a common form of model misspeci�cation.
In this paper, we develop a class of graphical and numerical methods for assessing the

adequacy of individual components of the logistic regression model (e.g. the functional form
of a covariate or the logistic link function) as well as the overall model adequacy for strati�ed
case-control data. The proposed methods are presented in the next section. In Section 3,
simulation results on the performance of the proposed methods are reported. In Section 4, the
proposed methods are applied to data taken from the Ille-et-Vilaine oesophageal cancer study
previously considered by Breslow and Day [10].

2. METHODS

2.1. Logistic regression

Let Y denote the disease status, taking values 1 for cases and 0 for controls, and let
X †=(X1; : : : ; Xp)′ be a p×1 vector of covariates. Suppose that strati�ed case-control sam-
pling is undertaken in which nij subjects are sampled from the ith (i=0; 1) disease category
and jth ( j=1; : : : ; J ) stratum, where strata are formed on the basis of, for example, gender or
age groups. Let ni=

∑J
j=1nij and n= n0 + n1. Assume that, in the jth stratum, the conditional

distribution of Y given X † is Bernoulli with success probability

Pr(Y =1|X †; �j; �)=
e�j+�

′X †

1 + e�j+�′X † (1)

where �j is the intercept term for the jth stratum, and �=(�1; : : : ; �p)′ is a p×1 vector of
regression coe�cients.
In strati�ed case-control studies, subjects are sampled conditionally on their disease status

and on their values of the strati�cation variables so that the resulting sample is not a random
sample from the whole population. If one ignores the feature of unequal selection probabilities
of the case-control design and proceeds as if the observations came from a random sample
within each stratum of the entire population, the standard maximum likelihood method will
provide valid inference for � but not for the �j’s [1]. Scott and Wild [11] showed that the
estimators for the intercept terms are biased by oj, where

oj= log
{
n1j Pr(Y =0|stratum= j)
n0j Pr(Y =1|stratum= j)

}
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Let �j= oj + �j, �=(�1; : : : ; �J ; �′)′, and X =(S ′; X †′)′, where S is a J×1 vector of stratum
indicator variables, i.e. the jth component of S equals 1, denoting the jth stratum, and the
other components equal 0. Let Xijl and Yijl denote the values of X and Y , respectively, for
the lth subject (l=1; : : : ; nij) in the ith disease category and jth stratum. Under model (1),
the score function for � is

U(�)=
1∑
i=0

J∑
j=1

nij∑
l=1

{Yijl − pj(Xijl; �)}Xijl

where

pj(X ; �)=
e�j+�

′X †

1 + e�j+�′X † (2)

Note that pj(X ; �) is the conditional probability that a member of the case-control sample
from stratum j with regression variables X is a case. Let �̂ denote the solution to the score
equation U(�)=0, and let I(�) denote the observed information matrix, i.e.

I(�)=
1∑
i=0

J∑
j=1

nij∑
l=1
pj(Xijl; �){1− pj(Xijl; �)}XijlX ′

ijl

2.2. Residuals

Residuals normally take the form of the observed minus the predicted values of the response.
Consider

rijl=Yijl − pj(Xijl; �); i=0; 1; j=1; : : : ; J; l=1; : : : ; nij

As mentioned above, pj(Xijl; �) is the expected value of Yijl conditional on Xijl and on being
selected into the jth stratum of the case-control sample. Clearly, E(rijl)=0, and cov(rijl; ri′j′l′)
=0 for (ijl) �=(i′j′l′). Thus, we de�ne the residuals as

r̂ijl=Yijl − pj(Xijl; �̂); i=0; 1; j=1; : : : ; J; l=1; : : : ; nij

The residual r̂ijl is the di�erence between the observed disease status and the estimated prob-
ability of disease conditional on the strati�ed case-control sample. The r̂ijl’s behave like ordi-
nary residuals in the familiar linear regression in that

∑1
i=0

∑J
j=1

∑nij
l=1r̂ijl=0, and for large n,

E(r̂ijl)≈ 0, and cov(r̂ijl; r̂i′j′l′)≈ 0 for (ijl) �=(i′j′l′). These residuals are the building blocks
for the proposed model checking techniques.

2.3. Functional forms of covariates

A common approach to assessing the functional form of a covariate in linear regression is
to plot the residuals versus the covariate [12]. A similar plot can be constructed for model
(1) on the basis of the r̂ijl’s. However, this approach is highly subjective: it is di�cult to
determine whether a seemingly unusual residual pattern re�ects a faulty functional form or
natural variation. Furthermore, such plots are uninformative for binary data because all the
points lie on one of the two curves according to Y =0 or 1. To avoid these problems, we
propose to use the cumulative sum of the r̂ijl’s over the covariate of interest to check the
functional form. The resulting residual analysis is objective and informative.
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Let Xijlk denote the kth component of X for the lth subject in the jth stratum and ith
disease group. Consider the following stochastic process:

Wk(t; �̂)= n−1=2 1∑
i=0

J∑
j=1

nij∑
l=1
r̂ijlI(Xijlk6t)

which is the cumulative sum of the residuals r̂ijl over the values of the kth covariate component
Xk . This process compares the observed and predicted values of the response over all possible
values of Xk and is thus informative about the misspeci�cation of the functional form of Xk .
Under the null hypothesis H0 that model (1) is correct, Wk(t; �̂) �uctuates around 0 as t varies.
We show in Appendix A that, under H0, Wk(t; �̂) converges weakly to a zero-mean Gaussian
process whose distribution can be approximated by that of

Ŵk(t; �̂)= n−1=2 1∑
i=0

J∑
j=1

nij∑
l=1
Zijlr̂ijl[I(Xijlk6t) + �̂′

k(t; �̂){n−1I(�̂)}−1Xijl]

where

�̂k(t; �)= n−1=2@Wk(t; �)=@�= − n−1 1∑
i=0

J∑
j=1

nij∑
l=1
pj(Xijl; �){1− pj(Xijl; �)}XijlI(Xijlk6t)

and Zijl (i=0; 1; j=1; : : : ; J ; l=1; : : : ; nij) are independent standard normal random variables.
To assess whether the observed pattern of Wk(t; �̂) is abnormal or not, we plot it along with a

few, say 20, realizations of Ŵk(t; �̂). The process Ŵk(t; �̂) can be generated by taking repeated
random samples of {Zijl} while �xing the data (Yijl; Xijl) (i=0; 1; j=1; : : : ; J ; l=1; : : : ; nij)
at their observed values.
Numerical tests can be constructed as well. Since Wk(t; �̂) �uctuates around zero under H0,

it is natural to consider the Kolmogorov-type supremum statistic Gk ≡ supt∈R |Wk(t; �̂)|, where
R denotes the real line. Let gk denote the observed value of Gk . An unusually large value of
gk would suggest that the functional form of Xk is inappropriate. To determine the statistical
signi�cance of the test, we compute the probability Pr(Gk¿gk), which can be approximated by
Pr(Ĝk¿gk), where Ĝk = supt∈R |Ŵk(t; �̂)|. In turn, Pr(Ĝk¿gk) can be estimated by generating
a large number (e.g. 1000 or 10 000) of realizations of Ŵk(t; �̂). In Appendix A, we show that
the test based on Gk is generally consistent against misspeci�cation of the functional form
of Xk .

2.4. Link function

Another source of model misspeci�cation is the logistic link function. To assess this aspect
of the model, we consider

W�(t; �̂)= n−1=2 1∑
i=0

J∑
j=1

nij∑
l=1
r̂ijlI(�̂′Xijl6t)

which is the same as Wk(t; �̂) except that the residuals are summed over the values of �̂′X
instead of Xk . This process compares the observed and predicted values of the response over
all possible values of the linear predictor and is thus informative about the misspeci�cation
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of the linear predictor or the link function. We show in Appendix A that, under H0, W�(t; �̂)
converges weakly to the same limiting zero-mean Gaussian process as

Ŵ�(t; �̂)= n−1=2 1∑
i=0

J∑
j=1

nij∑
l=1
Zijlr̂ijl[I(�̂′Xijl6t) + �̂′

�(t; �̂){n−1I(�̂)}−1Xijl]

where �̂�(t; �) is �̂k(t; �) with I(Xijlk6t) replaced with I(�′Xijl6t). As in Section 2.3, graph-
ical and numerical procedures can be constructed to assess whether the observed pattern of
W�(t; �̂) is abnormal or not. The supremum test statistic G� ≡ supt∈R |W�(t; �̂)| is shown in
Appendix A to be generally consistent against misspeci�cation of the logistic link function.

2.5. Overall model adequacy

To evaluate the overall adequacy of model (1), we consider

Wo(x; �̂)= n−1=2 1∑
i=0

J∑
j=1

nij∑
l=1
r̂ijlI(Xijl6x)

where x=(s1; : : : ; sJ ; x1; : : : ; xp)′, and I(Xijl6x) is the indicator function for the event that
all components of Xijl are no larger than the corresponding components of x. This process
compares the observed and predicted values of the response over all possible combinations of
the covariates and thus is informative about the misspeci�cation of any aspect of the model.
We show in Appendix A that, under H0, Wo(x; �̂) converges weakly to the same zero-mean
Gaussian process as

Ŵo(x; �̂)= n−1=2 1∑
i=0

J∑
j=1

nij∑
l=1
Zijlr̂ijl[I(Xijl6x) + �̂′

o(x; �̂){n−1I(�̂)}−1Xijl]

where �̂o(x; �) is �̂k(t; �) with I(Xijlk6t) replaced with I(Xijl6x). Since Wo(x; �̂) is a multi-
parameter process, it is di�cult to graphically assess whether the observed pattern of Wo(x; �̂)
is unusual. However, the supremum test statistic Go ≡ supx∈RJ+p |Wo(x; �̂)| can be used. The
p-value can again be estimated via simulation. In Appendix A, we show that this test is
consistent against any departures from model (1).

3. SIMULATION STUDIES

Extensive simulation studies were conducted to evaluate the performance of the goodness-
of-�t methods described in Section 2. Disease incidence was generated from model (1). We
de�ned two strata by Q=0 versus 1, where Q is Bernoulli with success probability 0.25.
We sampled nij =50, 100 and 200 cases and controls from each stratum. For each simulation
setting, 1000 case-control samples were generated. For each sample, we performed supremum
goodness-of-�t tests based on Wk(t; �̂), W�(t; �̂), and Wo(x; �̂). The nominal signi�cance level
for each test was set at 0.05, and the empirical size and power were estimated. The null
hypothesis H0 was rejected if the observed supremum statistic exceeded the 95th percentile
of the supremum of the approximating null distribution. The percentile was estimated from
1000 realizations.
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In one series of studies, we let X †=(X1; X 21 )
′, where X1 has a normal distribution with

unit variance and mean of 4 if Q=0 and 5 if Q=1. The dependence of the mean of X1
on Q creates a confounding e�ect. We set �=(−0:25; �2)′, where �2 = 0:05, 0.1, 0.15, 0.20
or 0.25. We set �0 and �1 so that 0.1–0.2 per cent of the simulated population were cases.
This represents the type of population in which a case-control study is likely to be con-
ducted. To estimate the size of each test, the data were �t using X †. To estimate the power,
the data were �t with X 21 omitted. For comparisons, the Wald statistic for testing �2 = 0
as well as Hosmer and Lemeshow’s and Stukel’s goodness-of-�t tests were evaluated. In
Hosmer and Lemeshow’s test, we partitioned the case-control sample into 10 groups accord-
ing to the deciles of the estimated probabilities pj(Xij; �̂). Stukel’s goodness-of-�t method
is a two degree-of-freedom test evaluating �1 = 0 and �2 = 0 in the revised logistic model
logit{Pr(Y =1|X ; �; �1; �2)}= �′X + 1

2(�
′X )2{�1I(�′X¿0)− �2I(�′X¡0)}. The two additional

parameters allow the revised logistic model to be either symmetric or asymmetric with tails
either lighter or heavier than in the original model.
The simulation results are summarized in Table I, where G1 denotes the supremum test

assessing the functional form of X1. The supremum tests have proper sizes and good powers.
The proposed tests are more powerful than Hosmer and Lemeshow’s test, and have power
similar to Stukel’s test. As previously mentioned, the latter two tests do not provide insights
into the nature of model misspeci�cation, which in this case lies in the functional form of
X1. The Wald test is optimal in testing extra parameters in embedded parametric models.
However, unlike the supremum tests, the Wald test cannot be used to test against non-nested
alternatives, such as which functional form of X1 is more appropriate, or whether the chosen
functional form is satisfactory.
To illustrate the graphical procedures, we consider a simulated data set with nij=100

generated from X † in which �=(−0:25; 0:25)′, but the data are �t with X 21 omitted. Figure 1
displays the plot of the observed cumulative residuals as well as 20 realizations from the
approximating null distribution. The p-value for the supremum test for the functional form of
X1 is less than 0.001, indicating that modelling X1 on a linear scale is inappropriate. When the
simulated data set is re�t including X 21 , the p-value for the supremum test for the functional
form of X1 jumps to 0.491. Figure 2 contains the plot of the observed cumulative residual
process under the true functional form of X1. The observed process now appear to randomly
�uctuate about zero as expected.
When the true functional form of a covariate is unknown, the observed pattern of the cu-

mulative residual process, such as that depicted in Figure 1, can provide useful hint about
the correct functional form. Speci�cally, the pattern of the cumulative residual process
seen in Figure 1 occurs when a quadratic covariate is misspeci�ed as a linear
term.
To illustrate other patterns of observed cumulative residual processes, we consider a co-

variate whose correct functional form is logarithmic. We simulated a data set with nij=100
in which X †=(log(X1)), where log(X1) has the standard normal distribution, and �1 = 1.
Figure 3 contains a plot of the observed cumulative residual process when X1 is modelled
as a linear term and demonstrates the pattern observed when the correct functional form
is logarithmic. Another illustration is when the relationship between a continuous covariate
and disease incidence is a threshold e�ect. We simulated a data set with nij=100 generated
from X †=(I(X1¿0)), where X1 is a standard normal variable, and �=1. Figure 4 contains
a plot of the observed cumulative residual process when X1 is expressed as a linear term.
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Table I. Simulation results for evaluating the sizes and powers of the supremum tests under
X †=(X1; X 21 ).

nij =50 nij =100 nij =200

�2 Size Power Size Power Size Power

0.05 G1 0.057 0.070 0.057 0.086 0.068 0.132
G� 0.040 0.070 0.052 0.086 0.060 0.096
Go 0.062 0.068 0.057 0.083 0.065 0.118
HL∗ 0.030 0.059 0.037 0.068 0.028 0.077
Stukel 0.063 0.084 0.047 0.104 0.052 0.138
Wald — 0.095 — 0.161 — 0.262

0.1 G1 0.064 0.135 0.057 0.227 0.069 0.396
G� 0.058 0.135 0.053 0.151 0.066 0.275
Go 0.061 0.136 0.054 0.211 0.064 0.392
HL∗ 0.033 0.085 0.039 0.123 0.038 0.189
Stukel 0.055 0.168 0.043 0.253 0.052 0.440
Wald — 0.261 — 0.451 — 0.716

0.15 G1 0.056 0.270 0.046 0.475 0.059 0.805
G� 0.062 0.195 0.055 0.311 0.066 0.549
Go 0.058 0.263 0.046 0.455 0.060 0.799
HL∗ 0.038 0.114 0.045 0.235 0.035 0.460
Stukel 0.058 0.310 0.052 0.489 0.051 0.791
Wald — 0.536 — 0.802 — 0.988

0.2 G1 0.061 0.481 0.043 0.790 0.056 0.979
G� 0.060 0.320 0.053 0.545 0.045 0.853
Go 0.064 0.468 0.044 0.789 0.064 0.975
HL∗ 0.049 0.223 0.042 0.440 0.044 0.776
Stukel 0.056 0.484 0.049 0.795 0.056 0.971
Wald — 0.814 — 0.980 — 1.0

0.25 G1 0.065 0.743 0.057 0.972 0.061 1.0
G� 0.069 0.468 0.058 0.775 0.054 0.979
Go 0.053 0.736 0.055 0.970 0.059 1.0
HL∗ 0.043 0.347 0.046 0.672 0.042 0.958
Stukel 0.069 0.684 0.051 0.947 0.053 0.999
Wald — 0.963 — 0.999 — 1.0

∗Hosmer–Lemeshow’s goodness-of-�t test.

This demonstrates the pattern observed when the true functional form is a threshold e�ect at
X1 = 0.

4. ILLE-ET-VILAINE OESOPHAGEAL CANCER STUDY

The proposed goodness-of-�t methods were applied to data taken from the Ille-et-Vilaine study
of oesophageal cancer [10]. The cases consisted of 200 males diagnosed with oesophageal
cancer at a regional hospital in the Ille-et-Vilaine district of Brittany between January 1972 and
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Figure 1. Plot of cumulative residuals versus X1 in the misspeci�ed logistic model for a simulated
data set. True model is (X1; X 21 ), and the �tted model omits X

2
1 . The black line indicates the observed

process, and the grey lines indicate 20 simulated realizations.

April 1974. There were 775 adult male controls drawn from electoral lists in each commune
who provided su�cient data for analysis. Subjects were administered a dietary interview
containing questions about tobacco use and alcohol consumption as well as other dietary risk
factors. We applied the proposed methods to the analysis relating tobacco use and alcohol
consumption to risk of oesophageal cancer. Since the controls tended to be younger than the
cases, age was included in all of the models.
We �rst considered age, alcohol consumption, and tobacco use as linear terms. Note that

tobacco use was recorded as a discrete variable having nine levels. However, to analyse
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Figure 2. Plot of cumulative residuals versus X1 under the true logistic model
(X1; X 21 ) for a simulated data set. The black line indicates the observed process,

and the grey lines indicate 20 simulated realizations.

it quantitatively, Breslow and Day assigned values to each level and treated the data as
continuous. We used the same quantitative values here. The p-values for the supremum tests
assessing the functional forms of age, alcohol, and tobacco were 0.001, 0.043, and 0.001,
respectively. Figure 5 contains the cumulative residual plot for age. The pattern of the observed
process resembles the pattern when a quadratic term is omitted from the model and the sign
of the regression coe�cient for the quadratic term is negative. The data were re�t adding
age2, and the p-value for the supremum test for age increased to 0.123. Figure 6 contains the
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Figure 3. Plot of cumulative residuals versus X1 in the misspeci�ed logistic model for a simulated data
set. The true functional form of X1 is log(X1) and the �tted model uses X1. The black line indicates

the observed process, and the grey lines indicate 20 simulated realizations.

cumulative residual plot for age in the quadratic model. The p-value for the supremum test
for alcohol was increased to 0.146, whereas the p-value for the supremum test for tobacco
use remained at 0.001.
Figure 7 shows the cumulative residual plot for tobacco use. The pattern of the observed

process resembles the pattern when a logarithmic scale is misspeci�ed as a linear scale. Note
that when Breslow and Day modelled tobacco use as a continuous covariate, their �nal model
expressed tobacco on a logarithmic scale. We re�t the data using log(tobacco). However,

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:229–247



MODEL-CHECKING TECHNIQUES 239

X1

C
um

ul
at

iv
e 

su
m

 o
f r

es
id

ua
ls

-2 -1 0 1 2 3

-10

-5

0

5

p-value=0.013

Figure 4. Plot of cumulative residuals versus X1 in the true logistic model for a simulated data set.
The true functional form of X1 is I(X1¿0) and the �tted model uses X1. The black line indicates the

observed process, and the grey lines indicate 20 simulated realizations.

the p-value for log(tobacco) was 0.003, still indicating misspeci�cation. Figure 8 contains a
cumulative residual plot for log(tobacco). The sharp drop at zero tobacco use is similar to
the pattern observed when there is a threshold e�ect at zero, i.e. there is an association for
any tobacco use. When we re�t the data adding an indicator for tobacco users (a variable
taking value 1 for tobacco users and 0 for non-users), the p-value for tobacco use increased
to 0.067, indicating improvement. However, there was still some misspeci�cation. In addition
to using the natural logarithm of tobacco use, Breslow and Day expressed tobacco as four
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Figure 5. Plot of cumulative residuals versus age (years) in the logistic model with age,
alcohol, and tobacco for the Ille-et-Vilaine oesophageal cancer data. The black line indicates

the observed process, and the grey lines indicate 20 simulated realizations.

categories: 0–9, 10–19, 20–29, 30 + g=day. In light of this, we applied our method to this
qualitative scale for tobacco use. However, based on our earlier cumulative residual plot,
we split the lowest category into two groups to distinguish non-tobacco users from users
of tobacco, i.e. we split the 0–9 g=day category into 0 and 1–9 g=day. Since tobacco use is
now a categorical variable, the functional form of tobacco use is no longer an issue. The
p-values for the supremum tests for assessing the overall model adequacy and the logistic
link function were 0.297 and 0.104. Table II summarizes the results based on the �nal model.
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Figure 6. Plot of cumulative residuals versus age (years) in the logistic model with age, age2, alcohol,
and tobacco for the Ille-et-Vilaine oesophageal cancer data. The black line indicates the observed

process, and the grey lines indicate 20 simulated realizations.

Based on the odds ratio estimates for tobacco use, it is apparent why log(tobacco) plus an
indicator for any tobacco use improved the model �t although some misspeci�cation was still
present. Compared to non-tobacco users, any tobacco use is associated with an immediate
increase in risk of oesophageal cancer, and then this risk plateaus as tobacco use increases.
However, the inadequacy of the log(tobacco) manifests itself at 30 + g=day of tobacco use,
which is associated with a threefold increase in risk compared to the other non-zero tobacco
use categories.
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Figure 7. Plot of cumulative residuals versus tobacco use (g=day) in the logistic model with age,
age2, alcohol, and tobacco for the Ille-et-Vilaine oesophageal cancer data. The black line indicates the

observed process, and the grey lines indicate 20 simulated realizations.

5. DISCUSSION

We have developed graphical and numerical methods for assessing the adequacy of the logistic
regression model for strati�ed case-control studies using the cumulative sums of residuals.
Similar methods have previously been developed for generalized linear models [13, 14] and
the proportional hazards model [15, 16]. The outcome-based sampling scheme for the case-
control study entails new challenges. The forms of the residuals, the cumulative sums, and
the asymptotic approximations used for the strati�ed case-control design di�er from those of
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Figure 8. Plot of cumulative residuals versus log(tobacco) in the logistic model with age, age2, alcohol,
and log(tobacco) for the Ille-et-Vilaine oesophageal cancer data. The black line indicates the observed

process, and the grey lines indicate 20 simulated realizations.

the other models. Furthermore, we have established the consistency of the supremum tests for
strati�ed case-control studies.
All the proposed tests are testing the null hypothesis that the entire model is correct, al-

though they are designed against di�erent alternatives. Speci�cally, Gk is most sensitive to the
misspeci�cation of the functional form of Xk and G� is most sensitive to the misspeci�cation
of the link function. Although we refer to G� as a link function test, it actually tests both the
link function and the linear predictor.
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Table II. Final model for the Ille-et-Vilaine study data.

Parameter Estimate SE OR 95 per cent CI

Age (year) 0.10 0.014 — —
Age2 (year) −0.0034 0.00076 — —
Alcohol∗ (g=day) 0.025 0.0026 1.03 1.02–1.03
Tobacco use†

1–9 (g=day) 1.81 0.39 6.10 2.82–13.18
10–19 (g=day) 1.72 0.40 5.59 2.56–12.21
20–29(g=day) 1.81 0.43 6.11 2.65–14.07
30+ (g=day) 2.90 0.47 18.26 7.26–45.97

∗Non-drinkers are the reference group.
†Non-smokers are the reference group.

Royston and Altman [17] and Royston et al. [18] proposed fractional polynomials as a
means to investigate the functional form of continuous covariates, and Hosmer and Lemeshow
[7] discussed their application to case-control data. Fractional polynomials can be used to
reveal functional forms which improve the model �t. This approach is subjective, and cannot
be used to assess the adequacy of a given functional form.
Recently, Pulkstnis and Robinson [19] developed two goodness-of-�t tests for logistic re-

gression models analogous to the deviance and Pearson chi-squared tests as well as Hosmer
and Lemeshow’s goodness-of-�t test. Their tests are useful for detecting interactions, and their
approach can be applied to case-control data. However, their tests tend to have low power
when the functional form of a continuous covariate is misspeci�ed. Furthermore, their tests
require the logistic regression model to include both categorical and continuous covariates.
FORTRAN programs that implement the proposed methods are available from the authors.

Future work consists of developing macros in commercial statistical software packages, such
as SAS, R, and Strata, that implement our propose graphical and numerical techniques.

APPENDIX A

A.1. Weak convergence of Wk , W�, and Wo

We �rst establish the weak convergence of Wo(x; �̂) under model (1). Consider the one-term
Taylor series expansion of Wo(x; �̂) at �:

Wo(x; �̂)=Wo(x; �) + �̂′
o(x; �

∗)n1=2(�̂− �) (A1)

where �∗ is on the line segment between �̂ and �. Note that

Wo(x; �)= n−1=2 1∑
i=0

J∑
j=1

nij∑
l=1
rijlI(Xijl6x)

Since each term rijlI(Xijl6x) is the di�erence of two monotone functions in x, the pro-
cesses {rijlI(Xijl6x); i=0; 1; j=1; : : : ; J ; l=1; : : : ; nij} are ‘manageable’ [20, 21]. It then
follows from the functional central limit theorem [20] that Wo(x; �) is tight. Let �o(x; �)=
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limn→∞ �̂o(x; �). Since �̂o(x; �) converges almost surely to �o(x; �) and n1=2(�̂− �) converges
in distribution, the second term on the right-hand side of (A1) is tight. Therefore, Wo(x; �̂) is
tight.
Since n1=2(�̂ − �) is asymptotically equivalent to n−1=2�−1U(�), where �= limn→∞

n−1I(�), Wo(x; �̂) is asymptotically equivalent to

W̃o(x; �)= n−1=2 1∑
i=0

J∑
j=1

nij∑
l=1
rijl{I(Xijl6x) + �′

o(x; �)�
−1Xijl}

For �xed x, the �nite-dimensional distributions of W̃o(x; �) are asymptotically zero-mean mul-
tivariate normal, implying the same for Wo(x; �̂). This fact, together with the tightness of
Wo(x; �̂), implies that Wo(x; �̂) converges weakly to a zero-mean Gaussian process with co-
variance function

�(s; t)=
1∑
i=0

J∑
j=1
	ijE{�ij1(s)�ij1(t)′}

at (s; t) as n→ ∞, where 	ij= limn→∞ (nijn−1) and �ijl(x)= rijl{I(Xijl6x)+�′
o(x; �)�

−1Xijl}.
The process Wk(t; �̂) is a special case of Wo(x; �̂) with xm=∞ for all m �= k. Hence, the

weak convergence of Wk(t; �̂) follows from the above result.
To establish the weak convergence of W�(t; �̂), let B
(�)= {b : ‖b − �‖6
}, and suppose

that for some 
¿0, the function Pr(b′X6t) is continuous in (b; t)∈B
(�)×[t1; t2]. If follows
from the earlier arguments for Wo(t; �̂) that W�(t; �̂)= W̃�(t; �̂) + op(1), where

W̃�(t; b)= n−1=2 1∑
i=0

J∑
j=1

nij∑
l=1
rijl{I(b′Xijl6t) + �′

�(t; b)�
−1Xijl}

and ��(t; b)= limn→∞ �̂�(t; b). Furthermore, W̃�(t; b) converges weakly on B
(�)×[t1; t2] to a
zero-mean Gaussian process and is stochastically equicontinuous [20]. In particular, W�(t; �̂)
and W̃�(t; �) are asymptotically equivalent and thus converge to the same limiting Gaussian
process.
Next, we establish the weak convergence of Ŵo(x; �̂). Conditional on the data (Yijl; Xijl)

(i=0; 1; j=1; : : : ; J ; l=1; : : : ; nij), the only random components of Ŵo(x; �̂) are the Z ′
ijls,

which are standard normal. Thus it follows from the multivariate central limit theorem that,
conditional on the data, the �nite-dimensional distributions of Ŵo(x; �̂) are asymptotically
zero-mean multivariate normal. Since Ŵo(x; �̂) consists of monotone functions in x, which are
manageable, the functional central limit theorem implies that Ŵo(x; �̂) is tight. The conditional
covariance function of Ŵo(x; �̂) at (s; t) is �̂(s; t)= n−1∑1

i=0

∑J
j=1

∑nij
l=1�̂ijl(s)�̂ijl(t)

′, where

�̂ijl(x)= r̂ijl[I(Xijl6x) + �̂′
o(x; �̂){n−1I(�̂)}−1Xijl]

By the uniform law of large numbers, �̂(s; t) converges uniformly to �(s; t). Therefore, Wo(x; �̂)
and Ŵo(x; �̂) converge to the same limiting zero-mean Gaussian process. Similar arguments
can be used to establish the weak convergence of Ŵ�(t; �̂), and its asymptotic equivalence to
W�(t; �̂).
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A.2. Consistency of supremum tests

It can be shown that model (1) holds if and only if model (2) holds. Given this fact, we can
establish the consistency of the proposed supremum tests on the basis of model (2). Under
misspeci�ed models, �̂ converges to a well-de�ned constant vector, say �∗. Let vijl denote the
true probability that a subject in the case-control sample from stratum j with covariates Xijl
is a case.
Consistency of Go= supx∈RJ+p |Wo(x; �̂)|: We claim that the test based on Go is consistent

against the general alternative H1 that there does not exist a constant vector � such that the
true conditional probability of disease can be expressed by (2) for all possible values of X .
It su�ces to show that under H1, n−1=2Go is non-zero as n→ ∞. Under H1,

n−1=2Wo(x; �̂)→ lim
n→∞ n−1 1∑

i=0

J∑
j=1

nij∑
l=1

{vijl − pj(Xijl; �∗)}I(Xijl6x)

which is non-zero at least for some x. Consequently, n−1=2Go converges to a non-zero constant.
This establishes our claim.
Consistency of G�= supt∈R |W�(t; �̂)|: Clearly,

n−1=2W�(t; �̂)→ lim
n→∞ n−1 1∑

i=0

J∑
j=1

nij∑
l=1

{vijl − pj(Xijl; �∗)}I(�∗′Xijl6t)

which is non-zero for some t unless vijl=pj(Xijl; �∗) for all values of �∗′
Xijl. Thus, the test G�

is consistent against misspeci�cation of the link function in the form of Pr(Y =1|X †)= h(�∗
j +

�∗′
X ), where h is not the logistic function.
Consistency of Gk = supt∈R |Wk(t; �̂)|: Suppose that the true functional form of the kth

covariate component is f(Xk) rather than Xk , i.e.

vijl=
exp{�j + �kf(Xijlk) +

∑
m �=k�mxijlm}

1 + exp{�j + �kf(Xijlk) +
∑

m �=k�mxijlm}
Then

n−1=2Wk(t; �̂)→ lim
n→∞ n−1 1∑

i=0

J∑
j=1

nij∑
l=1

{vijl − pj(Xijl; �∗)}I(Xijlk6t)

which is non-zero for some t unless vijl=pj(Xijl; �∗) for all values of Xijlk . In general, �∗
k �=�k .

It follows that vijl �=pj(Xijl; �∗) if �∗
m=�m for all m �= k. In the more realistic situations

in which �∗
m �=�m (m �= k), the inequalities are unlikely to o�set the misspeci�cation of the

functional form for the kth covariate component in such a way that pj(Xijl; �∗)= vijl for all
values of Xijlk . Hence, Gk is generally consistent against misspeci�cation of the functional
form.
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