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ABSTRACT. This article deals with parameter estimation in the Cox proportional hazards model
when covariates are measured with error. We consider both the classical additive measurement
error model and a more general model which represents the mis-measured version of the covariate
as an arbitrary linear function of the true covariate plus random noise. Only moment conditions are
imposed on the distributions of the covariates and measurement error. Under the assumption that
the covariates are measured precisely for a validation set, we develop a class of estimating
equations for the vector-valued regression parameter by correcting the partial likelihood score
function. The resultant estimators are proven to be consistent and asymptotically normal with
easily estimated variances. Furthermore, a corrected version of the Breslow estimator for the
cumulative hazard function is developed, which is shown to be uniformly consistent and, upon
proper normalization, converges weakly to a zero-mean Gaussian process. Simulation studies
indicate that the asymptotic approximations work well for practical sample sizes. The situation in
which replicate measurements (instead of a validation set) are available is also studied.
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1. Introduction

The proportional hazards model (Cox, 1972) specifies that the cumulative hazard function for
the survival time associated with possibly time-dependent covariates Z takes the form
A(t|Z) = j(; exp(B Z(s))d Ao (s), where B, is a vector-valued regression parameter, and A (-) is
an unspecified baseline cumulative hazard function. Suppose that we have a random sample
of n subjects. Fori =1,...,n, let T; be the survival time, C; be the censoring time, and Z,(-)
be the vector of covariates. Write 7; = min(7}, C;), &; = I(T; < C;), Ni(t) = 8;1(T; < t), and
Yi(t) = I(T; > 1), where I(-) is the indicator function. Suppose that C is independent of T
conditional on Z and that the data are observed on the time interval [0, 7], where 0 < 7 < co.
Then a consistent estimator fi of B, can be obtained by solving the partial likelihood score
equation U(p) = 0, where

z Y;(0) exp(B7Z;(1))Z; (1)

/ " dN;(). ()
‘ > V(1) exp(B Z;(1)

The baseline cumulative hazard Ay () can be estimated by
R n t dN, s
A()(t) = J n ( )A
‘ 2. 7j(s) exp(B'Z;(1))
j=

i=1

(Breslow, 1972).
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In many applications, covariates are subject to measurement error. A common approach to
deal with this problem is to use the mismeasured version of the covariate directly. It is well-
known that this practice causes bias in the estimated regression parameter. Great efforts have
been made in developing methods to correct this bias; see Fuller (1987) and Carroll et al.
(1995) for excellent reviews of various methods for non-censored data. Several methods have
been developed for the Cox regression with censored data. Prentice (1982) proposed using the
induced partial likelihood under the restrictive assumption that the event is rare. Zhou & Pepe
(1995) developed a consistent estimator for the regression parameter when the covariates are
discrete. Wang et al. (1997) developed a regression calibration method which only gives
approximately consistent estimators. Hu ez al. (1998) described some likelihood-based
methods under the classical additive error model (Carroll ez al., 1995, p. 8) with a known
error distribution.

Stefanski (1989) and Nakamura (1990) developed the approach of corrected score functions
to remove the bias induced by measurement error. For the proportional hazards model, an
exact corrected score does not exist. Nakamura (1992) introduced two approximately
corrected scores under the restrictive assumption of additive normal error with known
covariance matrix. The properties of the resulting estimators were explored only by
simulations. Buzas (1998) removed the condition of normal error, but assumed that the
moment generating function of the error distribution is known. The asymptotic properties of
the resulting estimator were not carefully studied. Neither Nakamura nor Buzas studied the
estimation of Ag(-).

In this paper, we extend the work of Nakamura (1992) and Buzas (1998) to obtain a broad
class of consistent estimators for the regression parameter of the Cox model when one or more
covariates are measured with error. We pay primary attention to the setting in which the
surrogate covariate, i.e. the mismeasured version of the covariate, is measured on all study
subjects while the true covariate is ascertained on a randomly selected validation set. By using
the validation set data to estimate the error distribution, we provide a practical way of
calculating the parameter estimators and their variances in real applications. The distributions
of the covariates and measurement error are completely unspecified. The proposed estimators
are proven to be consistent and asymptotically normal with easily estimated variances.
Furthermore, we develop a corrected version of the Breslow estimator for the cumulative
hazard function, which is shown to be uniformly consistent and asymptotically normal.
Finally, we extend the results to the situations in which replicate measurements rather than
validation sets are available.

2. Classical error model with a single covariate

Suppose that there is only a single time-independent covariate. For the ith subject, let Z; be the
true covariate, and W be the surrogate covariate. Assume that W; = Z; + ¢;, where ¢; is a zero-
mean measurement error, which is independent of 7;, C; and Z;. Let &; = 1 if the ith subject is

in the validation set, and & =0 otherwise. Assume that & (i=1,...,n) are ii.d. with
P(¢ = 1) = o, and are independent of all other variables. Let & =1 — & and & = 1 — a. The
complete data consist of i.i.d. random elements (T,-,é,-,Zi, W, &) (i=1,...,n), but we cannot

observe Z; if & = 0.

If we could observe all Zs, the partial likelihood score function (1) would be
UB) = S0 42— SV (B,0) /SO (B, 1)} dNi(r). where SW(B,1) = n™! S, ¥,(1) exp(pZ,) 2"
(k=0,1,2). When ¢; =0, we cannot observe the true covariate Z;, but only the surrogate
W;. A naive estimator of f3, is obtained by substituting W; for Z; in U(f) for all the subjects who
are not in the validation set. Let %, be the g-algebra generated by all the failure, censoring and
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true covariate histories of all the subjects over [0,7]. Although E(W|F.) = E(W;|Z;) = Z,
in general E(exp(fW;)|7 ) # exp(BZ;) and E(exp(BW;)W;|F .) # exp(pZ;)Z;. Thus, the naive
estimator for f§; is not asymptotically unbiased. Our goal is to correct this bias.

Let n(B) = E(ef exp(Be1)) (k =0, 1,2). Clearly,

E(exp(pWi)| 7<) = no(B) exp(BZ:), ®3)
E(exp(BW)Wi| 7<) = no(B) exp(BZi)Zi + m () exp(BZ:). (4)

Thus, when the true covariate Z; is not available, i.e. & =0, we may replace exp(fZ;) and
exp(BZ))Z: in U(B) by ng'(B)exp(BW:) and ng" (B)exp(BW) Wi — ny*(B) exp(BW)m (B).
respectively. Define
R (B) = & exp(BZ:) + Eng ' (B) exp(BW), (5)
RY(B) = & exp(BZ)Z + Emg " (B) exp(BW) (Wi — 3 (B)mi ()} (6)

It is easy to see that E{n~! 37, )’;(t) ( N Z .} =S®(B,) (k=0,1). Thus we consider the
following modification of U(f):

. S 1R ()
| Sz am T tani(), (7)
=1 70 > Y(0R ()

The above expression is not a genuine estimating function for f, because 5, and #, are
unknown. For fixed f, however, we can estimate #,(f) (k =0,1,2) consistently from the
validation set by the moment estimators i, (f) = > 1, & exp(ﬁe,) />3 & (k=0,1,2). This
motivates us to replace R,(.())(ﬁ) and Rfl)([f) in (7) with RE (p) and Rf )(ﬁ), which are obtained
from (5) and (6) by replacing 7, () with #,(8) (k = 0, 1). To increase efficiency, we introduce a
weight o € [0, 1] to down-weight the influence of the subjects in the non-validation set. Thus,
we propose the following estimating function

UC(.Bv (U) = i(éz + wz:) J::{EIZI + EIVK - EC(.B7 t7 w)}d]\’l(t)

i=1

where Ec(f,1,0) = S (B,1,0) /S (B,1, ), and S& (B, 1,0) = n"! S, (&, + &) V(ORM (B)
(k=0,1). Denote the solution of Uc(f,®)=0 by Pc=pc(w). In addition, by
analogy to (2), we propose a corrected Breslow estimator for the cumulative hazard function

/1()(2‘)2
; (' dN;i(s)
Ac(t):Z Y
- Lzlx,(smﬁ”(ﬁc)
Let (ﬁvt) E{s® )} (k=0,1,2), e(B,1) =s"(p, t)/s<°)(ﬁ7t), o(B,1) = s (B,1)/
sO(p, ) —e(B, )% ¢ = jo )(By, t)dAo(£), and T = [ v(By, )s'”(By, t)dAo(t). Also define

Ir,=E
0

{m ~ e(Bor )N (1) — 13" (Bo) exp(Bo W) ¥s (0d Ao(1)}
T 2
+ 152 (Bo)m (o) L exp(Bol¥) Y (0d A1)

= (5‘/“)2<P2’154(/’)0){ﬂ%(ﬁo)nz(zﬁo) = 2no(Bo)ni (Bo)1 (2B0) + ’7%(/30)’10(2/50)}

Then we have the following theorem for the asymptotic distribution of n~1/2 Uc(By, w):
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Theorem 1
Under conditions 1-5 given in the appendix, n~'>Uc(By, ®) —q N(0,I'c), where I'c =
ol + w*@l, + al,).

The proof of theorem 1 is given in the appendix. The following theorem establishes the
consistency and asymptotic normality of f:

Theorem 2

Under conditions 1-5, Bc(w) exists and is unique in a neighbourhood % of B, with probability
converging to one as n — oo, and fe(w) — Po. Furthermore, n"2{Be(w) = By} —a N(O, I'p),
where I'g = T'c /{ (o + )}

The proof of this theorem and a consistent estimator I’ p for I'p are given in the appendix.

Foranyw > 0, ﬁc(w) is a consistent estimator of f§;, and its asymptotic variance is a function
of w. By taking the derivative of I'g with respect to w, we see that I'g achieves its minimum at
wopt = al'/(al', +aly). Thus, ﬁc(wopl) has the smallest asymptotic variance in the class of
consistent estimators f(w) (w > 0). In particular, at least for large n, [}C(wopt) will be more
efficient than B (0), which is the estimator of the complete-case analysis. We can estimate Wopt
by Wopt = &f"/(&f"r + &fl,), where & =n~!' 30 &, @=1—4 and I', I'. and I', are given in the
appendix. Because @,p; depends onﬁc, these two estimators can be obtained simultaneously by
a simple iterative procedure, or a preliminary consistent estimator of f§, can be calculated with
® = 0 or 0.5 and plugged into the expression for @p, which is in turn used to obtain the final
ﬁc((bopt). Our simulation results show that the one-step computation is satisfactory.

The next theorem establishes the weak convergence and uniform consistency of A¢(-), and
the proof is again given in the appendix.

Theorem 3

Assume that conditions 1-5 hold. Then n'/*{Ac(t) — Ay(t)} converges weakly to a zero-mean
Gaussian process with covariance function ¢(t,s) at time points (t,s), where ¢ is defined by (13)
in the appendix. Furthermore, sup,cj | ]/ic(t) — Ao(1)| = 0.

3. Classical error model with multiple covariates

In this section, we extend the results of section 2 to accommodate multiple covariates. Suppose
that, for the ith subject, a p-vector of time-independent covariates Z; is measured with error
and a g-vector of possibly time-dependent covariates X;(¢) is measured precisely. The
surrogate for Z; is W; = Z; + €;, where the vector-valued error terms €; (i = 1,...,n) are i.i.d.
with mean 0, and are independent of all other random variables. Here, 0, is a p-vector of 0s.
Let H;(1) = (21, X;()")" and H;(1) = (WS, Xi()")". The Cox model specifies that
dA(1|H,) = exp(00H;(1))d Ao (), where 0) = (BY,y3)" with B, and y, pertaining to Z; and
X;(?), respectively.

For vectors a = (ay, .. .,a,,)T and b= (by,.. .,bq)T, define a ® b to be the p x ¢ matrix with
a;b; as the (i,j)th element, and let a®' =1, a® =a, and a®’=a®a Write
SW(0,1) = n ' S0, Yi(e) exp(0TH; (1)) H (r) (k=0,1,2), and s¥)(0,7) = E{S¥(0,7)}. We
further define e(0,7) =s1(0,7) /5% (0,7), v(0,7) =s2(0,1)/s(0,7) — e**(0,7), and
I = ng(em t)s<°>(60, [)d/\()(l‘).

If Z were measured on all study subjects, the partial likelihood score function for 6y would
be U(0) = S0, [ {Hi(t) — S (0,£)/5)(0,£)}dN;(t). When only surrogate W can be observed
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for subjects not in the validation set, we define n,(B) = E(exp(B'e;)e*) (k = 0,1,2), and, for
i=1,...,n,let

R"(8,1) = & exp(0TH; (1)) + Emy ' () exp(8TH,(1),

1

R (0,0) = & exp(OTH()HL() + ' () exprﬁ,«(r)){Hf(r) - [”0 o “”} }
q
It is not difficult to see that E{n~' >} Y,(t)RE“((—)7 N7} =SW(0,1) (k =0,1), where Z. is
the g-algebra generated by {N;(¢),Yi(¢),H;(¢) : t € [0,7];i =1,...,n}. For fixed B, we can
estimate ,(B) consistently by f,(B) = >1, & exp(BTe)e /S0 & (k=0,1,2). Then, for
k=0,1andi=1,...,n, we define f{l(k) (0,7) in the same way as Rl(k) (0,17), but with #,(B) and
N, (B) replaced by 7, (B) and 0, (B), respectively. Also, as in section 2, in deriving the estimating
function, we may downweight the contributions of the subjects in the non-validation set
to improve efficiency. Here the weighting is achieved by a (p+¢q) X (p+¢) matrix Q.
Let A; = &1y + &Q, where I, is the (p+¢) x (p+ ¢) identity matrix. Let S<Ck) 0,7,Q) =
n Y Y(ARY(0,0) (k=0,1), and Ec(0,7,Q) = {SX(0,7,Q)} 'SL)(6,7,9). Then we
can define the estimating function for 0y:

Uc(0,Q) = iA,— J;{f[H,-(t) + EHL(1) — Ec(0,1,9Q) LdNi(1).
i=1

Let 6c = 0c(Q) be the solution to Uc(0, Q) = 0. As a generalization of (2), the corrected
version of the Breslow estimator for Ay(¢) is

A=Y J dN(s)

PSS GOR O, s)

=
Similar ~ to  section2, let T, = E[[; {H1(¢) — e(80, 2) }dN:1 (£) — 5" (By) exp (07 Hi (¢))
XYi(0)dAo(0)] +1” (Bo) Jy exp(O5Hi (1)1 (1)d Ao(r) {my (By) ", 04} ]2, and

T, = (a/2) 00y (Bo) [Orj, 0’”"}

qxp O’IX‘]

i=1

where T = 1 (Bo)n2(2B) — 10 (Bo) 1 (2B0) © 1 (Bo) — 10 (Bo)ny (Bo) & 1y (2Bo) + 110 (2By) i (Bo)
and ¢ = J; 59 (89, ¢)dAy(¢). The asymptotic normality of n~!/>Uc(8y, Q) is established in the
following theorem.

Theorem 4
Under conditions 1, 2, 3', 4, 5 and 6 given in the appendix, n_l/zUC(Bo, Q) —; N(0,T¢), where
e = ol 4+ Q(al, + ol)QT.

A brief proof can be found in the appendix. The next theorem follows from theorem 4,
together with the arguments given in the proof of theorem 2.

Theorem 5

Under conditions 1, 2', 3', 4, 5 and 6, éc(ﬂ) exists and is unique in a neighbourhood of
00 with probability converging to one as n— oo, and éc(ﬂ) —p 00.  Furthermore,
n'20c(Q) — 0} —4 N(0,To(Q)), where To(Q) =T (a4, +5Q) T (ol , +a2) T

It can be shown through simple matrix algebra that Qq, = aI'(al’, + oI’ ,')71 is the optimal
weight matrix in that T'y(Q) — I'y(Qp) is positive semidefinite for all Q. One can estimate
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Q. in the same manner as in the case of w in section 2. Analogous to theorem 3, the
corrected Breslow estimator is again asymptotically normal and uniformly consistent.

4. Generalized error model with multiple covariates

It may not be always appropriate to use the classical error model, which assumes that the
measured surrogate is unbiased for the underlying true covariate. In this section, we extend the
results of sections 2-3 to allow a more general measurement error model. All the notation is
defined in the same way as in the previous section unless otherwise indicated. Under the

generalized error model, the /th (/=1,...,p) surrogate is a linear function of the
corresponding true covariate plus a random noise: W; = aq; + bo;Z;; + €, where ag; and
bo; # 0 are constants, and ¢; (i =1,...,n) are i.i.d. zero-mean random variables, which are

independent of the true covariate, other covariates as well as the failure and censoring times.
Note that (VV,/ — a()/)/b()/ =7y +¢€y, where ¢;= E,-//bo/. Let ay= (ao“ R a()p),
bo = (bo1, ..., bop), and € = (€, ..., e,-,,)T. Again, we do not assume any specific distribu-
tions for Z; and €;. For any vector a, let diag(a) be the square matrix with a as its diagonal
and Os elsewhere. For any p-vectors a and b, define W;(a,b) = diag(b)"'(W; —a) and
H;(s,a,b) = (Wi(a,b)", X;()")" (i =1,..,n). Let n,(B,a,b) = ", ¢&expp {Wi(a,b)
—Z}{Wi(a,b) — Z,}* /S & (k= 0,1,2). Also let

9(0,1,2,b) = & exp(0TH,()) + &ty ' (B.a,b) exp(0TH,(z, 2,b)),
D (0,£,a,b) = & exp(0TH; (1)) H,(f) + E,—ﬁal(ﬁ, ab) exp(()TI:I,«(t7 a,b))

x {H,-(z, ab) - [’70 (B, by (B, ab)} }

RO
rRY

0,

We then define SU (GtQab)—n*IZ Y() j((ﬁtab) (k=0,1), where A=

&Ly + &Q. Finally, let Ec(0,1,Q,a,b) = {S ,b)} S ( t,Q a b), and

(0,9, a,b) ZA J {&H, () + EHi(1,2,b) — Ec(0,7,Q, a,b) }dNi(1)

If ag and by are known, we are back to the classical error model discussed in section 3, since
W, (ag,bg) = Z; + €;. Using W,(ag,by) as the surrogate and applying the method previously
developed, we end up with an estimating function which is exactly U¢(0, €, a9, bg). This can be
easily seen from the definitions of 4, (B,a,b) and ﬁfk (0,7,a,b) (k=0,1).

Although in general ay and by are unknown, we can estimate individual components a¢; and
by (I =1,...,p) consistently by the least-squares estimators a, and b; based on the validation
set. Let a = (Ezl,...,&p)T and b = (517...713p)T. The proposed estimator 8¢ = 0(Q) is the
solution to Uc(0, L, zLB) = 0. We then estimate Ay(¢) by

P N dN;(s)
Ac(t) = m .
=2 L > Y(s)R (B¢, s, 4,b)
Jj=1

i=1

Let I, be the first p columns of I'. Also, let p, = diag (E Z1), 65 = (var(Z1), . ,var(le))T,
'z, = diag (GZ), I'. = var(e;), By = diag(by), and B, = diag (B,). Define I'z. to be the p x p
matrix with the (i,/)th element cov(Zy;,Z;)cov(er;,€1;). Write Wi = Wi;(ag,by) and
I:Ij(t) = (W:T XT(1))". We then define T like T i in the previous section, but with I:II()
replaced by H,(f). Also, let T, =« *2( 2JB, 'TB;'J" +T,B;'Bi T, T2, /BB, 'T}),
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Ly = @0 20ng % (Bo) IBy {7 (By) — 1o (Bo)Ma(Bp)}I",  and Ty = FqT,., where  J =
(Lyxp,0,.,)". The asymptotic distribution of n~'/2Uc(0p, 2, 29,by) can be obtained from
theorem 4. Then a Taylor series expansion of n~/>Uc(0y, L2, ﬁ,f)) around (ag,by) yields the
following theorem.

Theorem 6

Under conditions 1,2, 3', 4, 5, 6 and 7 given in the appendix, n*'/zUC(Oo, Q, ﬁ,f)) —4 N(0,I'),
where Tk = ol + Q@0 + o, + oy, + o, +ol,)QY.  Furthermore, n'/*{8c(Q) — 0y}
—4 N(0,T), where Ty = T~ (al,y, + 3€2) ' T (e, +0Q) ' T,

The proof of this theorem and a consistent estimator for I'y are given in the appendix. The
optimal weighting matrix szl =al(al’y + o', + o'y + oy, + ocl"q)fl can also be estimated
consistently.

The following result for the corrected Breslow estimator is analogous to theorem 3 in
section 2:

Theorem 7
Under the same conditions of theorem 6, n'/*{Ac(t) — Ao(t)} converges weakly to a zero-mean
Gaussian process. Furthermore, sup,c(q |Ac(t) — Ao(1)|—, 0.

The proof is similar to that of theorem 3 and is outlined in the appendix.

5. Simulation studies

Extensive simulation studies were carried out to investigate the performance of the proposed
estimators in practical situations. The baseline hazard was set to be 1, and two covariates Z
and X were generated from a bivariate normal distribution with var(Z) = var(X) = 1 and
cov(Z,X)=0.5. The surrogate W of Z was generated from the classical error model
W = Z + €, where € is mean-zero normal with standard deviation o. = 0.2,0.5 or 1; X was
supposed to be measured precisely. The regression coefficient f5, of Z varied among 0.2, 0.5
and 1, while the coefficient y, of X was fixed at 0.5. Censoring times were generated from the
uniform distribution on [0, 7], where © was chosen to yield a censoring rate of approximately
30%, 50% or 70%. For a total sample size of 500, three sizes of the validation set were
considered: « = 0.1,0.2,0.5. For each combination of the simulation parameters, 10000 data
sets were generated, and for each data set five estimators of 0y = (S, yO)T were calculated: the
full-data estimator, which uses the true value of Z for all subjects; the complete-case estimator,
which uses only the validation set; the first naive estimator, which uses W instead of Z for all
subjects; the second naive estimator, which uses W for subjects in the non-validation set and Z
for subjects in the validation set; and the proposed adaptive estimator described in section 4.
For the proposed estimator, we assumed the generalized error model. To calculate the
proposed estimator, the optimal weight is obtained by the one-step computation, and the
initial © was set to be the diagonal matrix with 0.5 on its diagonal.

Table 1 summarizes the results for ff, when §, = 0.5 and the censoring rate is approximately
30% or 70%. Clearly, the two naive estimators are biased towards 0, and the bias increases
with the standard deviation of the measurement error. The proposed estimator corrects this
bias very well. The standard error of the proposed estimator is always smaller than that of the
complete-case estimator, and is not much larger than that of the full-data estimator when
the error is small (o, = 0.2). The Newton—Raphson algorithm broke down in 40 to 50 out of
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Table 1. Simulation results under the model dA(t) = exp(BoZ + yoX)dt with fy =y, = 0.5, and censoring
rates 30% or 70%

30% censored 70% censored
o o Estimator  Mean SE SEE CP Mean SE SEE CP
* * Full data  0.502  0.066  0.066  0.951 0.503 0.098 0.098 0.952
0.1 * CC 0.526  0.244 0229 0946 0.544 0386  0.354  0.949

0.2 Naive 1 0.475 0.064  0.064  0.925 0.477 0.095 0.095 0.944
Naive II 0.477 0.064  0.064  0.931 0.479 0.095 0.095 0.946
Proposed  0.503 0.070 0.069 0.949 0.504 0.102 0.101 0.950

0.5 Naive I 0.368 0.057 0.056 0.342 0.373 0.084 0.084 0.658
Naive 11 0.378 0.057 0.057 0.423 0.383 0.085 0.085 0.705
Proposed  0.502 0.094  0.093 0.947 0.504 0.127 0.125 0.951

1.0 Naive 1 0.204  0.042 0.042 0.000 0.210 0.063 0.063 0.006
Naive II 0.217 0.044  0.043 0.000 0.223 0.065 0.065 0.015
Proposed  0.476 0.160 0.147 0.900 0.484 0.213 0.193 0.915

0.2 * CC 0.512 0.158 0.154 0.944 0.519 0.241 0.232 0.946
0.2 Naive I 0.475 0.064 0.064 0.925 0.477 0.095 0.095 0.944

Naive 11 0.480 0.064 0.064 0.935 0.482 0.095 0.096 0.950

Proposed  0.504 0.069 0.068 0.946 0.505 0.101 0.100 0.950

0.5 Naive I 0.368 0.057 0.056 0.342 0.373 0.084 0.084 0.658

Naive II 0.389 0.058 0.058 0.502 0.393 0.086 0.086 0.753

Proposed  0.505 0.084 0.083 0.949 0.507 0.119 0.117 0.950

1.0 Naive 1 0.204 0.042 0.042 0.000 0.210 0.063 0.063 0.006

Naive 11 0.231 0.045 0.044 0.000 0.237 0.067 0.067 0.032

Proposed  0.490 0.120 0.116 0.929 0.495 0.165 0.159 0.939

0.5 * CC 0.505 0.095 0.094  0.949 0.508 0.141 0.140 0.949
0.2 Naive I 0.475 0.064  0.064  0.925 0.477 0.095 0.095 0.944

Naive 11 0.488 0.065 0.065 0.944  0.490 0.096 0.096 0.951

Proposed  0.504  0.068 0.067 0.949 0.506 0.100 0.099 0.951

0.5 Naive I 0.368 0.057 0.056 0.342 0.373 0.084 0.084 0.658

Naive 11 0.424  0.061 0.060 0.748 0.428 0.090 0.090 0.869

Proposed  0.505 0.074  0.073 0.948 0.507 0.108 0.107 0.949

1.0 Naive | 0.204  0.042 0.042 0.000 0.210 0.063 0.063 0.006

Naive 11 0.289 0.052 0.049 0.020 0.294 0.075 0.074 0.215

Proposed  0.502 0.085 0.084  0.948 0.504 0.123 0.122 0.948

Note: Mean and SE are the mean and standard error of the estimator, SEE is the mean of the standard
error estimator, and CP is the coverage probability of the 95% confidence interval.

When ¢, = | and censoring rate is 30% the proposed method broke down 44 times in the 10 000 replicates
for « = 0.1 and 12 times for o = 0.2. When o, = 1 and 70% censored there were 46 breakdowns for
a=0.1, 11 for « = 0.2, and 1 for o = 0.5. There was 1 when o, = 0.5, 30% censored and « = 0.1. The
breakdown cases were excluded from the calculations of the summary statistics.

* Estimator does not depend on this parameter.

the 10000 replicates under the extreme condition where the error is large (o. = 1) and the size
of validation set is small (& = 0.1). There were much less or no breakdowns in all the other
settings. The estimated standard error of the proposed estimator is on average quite close to
the true standard error, and the coverage probability of the 95% confidence interval is also
very satisfactory, except for the extreme combination of ¢, =1 and o =0.1. In addition,
the simulation studies showed that the naive estimators for y, are also biased, though the
magnitude of this bias is in general smaller than that of the naive estimators for f;,. The
proposed method corrects this bias as well.
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When f, = 0.2, the results are similar, though the proposed estimator is less likely to break
down, and the coverage probabilities are excellent even in extreme settings. When f = 1.0, the
proposed estimator performs a little bit worse. Additional simulation studies revealed similar
pictures for n = 200 and « = 0.2 or 0.5, and for uniform rather than normal Z. Simulations
with f, = —0.5 also showed that the naive approach biases the estimator of 5, towards 0 and
the bias is well corrected by the proposed method.

6. Classical error model with replicate covariate measurements

In many applications, only replicate measurements are available for the covariate subject to
measurement error. Here, we show how to extend the proposed methods to this important and
realistic setting. It is infeasible to estimate the bias in the surrogate based on replicates alone.
Thus, the classical error model is required in this section. Suppose that, for the ith subject, a
p-vector of time-independent covariates Z; is measured with error and a g-vector of possibly
time-dependent covariates X;(¢) is measured precisely. For conciseness, we assume that Z; is
only measured twice by the surrogates W;; = Z; + €;; and Wy, = Z; + €5, where the vector-
valued error terms €;,, (i = 1,...,n;m = 1,2) are i.i.d. with mean 0, and are independent of all
other random variables. We make an additional assumption that the error distribution is
symmetric, i.e., €] and —e;; have the same distribution.

Let H;(t) = (ZF,X,()")" and H;(1) = (W, ,X,()")", where W, = (Wi +Wp)/2. We
assume the same Cox model as in section 3. Write n,(B) = E(exp(BTen)elf) (k=0,1,2).
Note that

E(exp(0"H;(1))|F.) = 3 (B/2) exp(0TH; (1)),

E(exp(6THL (1) HL(1)|72) = 13 (B/2) exp(07H, (1) Hi(r) + exp(67H, (1) {”O“‘/ 2>:h B/2) } ,
Define

R (0.1) = ng” (B/2) exp(6"HL(1)),

R (0,1) = 13(B/2) exp(0"HL (1) HL (1) — exp(6HL, (1) {”0 ®/ 20);“ b/ 2)} .

It is easy to see that E{n~' 3", Y,(t)R¥(8,7)| 7.} = S®(0,7) (k = 0, 1), where S*)(0,7) are
defined in section 3. By  the symmetry of the error  distribution,
E{exp(B"(Wii — Wa))} = n5(B) and  E{(Wir — Wa) exp(B" (Wi — Wa2))} = 211 (B)n; (B)-
Thus, 7y(B) and n,(B) can be estimated by 7(B) = {n~' 31, exp(B" (Wa — W))}'* and
W (B) = {207, (B)} " 320, (Wi — Wa) exp(BT (Wi — Wa)). For k = 0, 1, we define lil(.k) (0,7) in
the same way as Rﬁk) (0,7), but with n,(B/2) (/=0,1) replaced by #x,(B/2). Let
sE@,0=n' S KR (0.0) (k=0,1), and Ec(6,) =S (0,)/5(8,1). We then
propose the estimating function

n

Ue(®) = 3 [ () ~ Ee0.0}av00.

i=1
Denote the resultant estimator by 0c. The corresponding estimator of Ay(¢) is

A _ ¢ dNi(S)
Ac(t) = ; JO S Yj(s)f?ﬁ-o) (Bc,s)

Let
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" = f{ﬁ,@ — e(00, )} {dNi(1) = R (00, ) Yi()dAo(r) }

0
+ L exp(OTHL (1) Y,(1) d Ao (1) 15> (Bo/2) {"‘ (30/ 2) ] 7
n (ﬁo/z)} }

= 1/ exp® W - Way2 {2 [ N )| M

where (0,7) and ¢ are defined in section 3. Also, let T, = E(u?z), I, =E(u ®r),
I, = E(r; ®uy) and T, = E(r{?). We then have the following result for n~'/2Uc(0p):

Theorem 8
Under conditions 1, 2", 3", 4, 5, 6 and 8 given in the appendix, n~""*Uc(0) —4 N(0,14,T¢),
where I'c =T, + 1, +1,,+T,.

The asymptotic properties of 0c are established in the following theorem:

Theorem 9

Under conditions 1,2", 3", 4,5, 6 and 8, O¢ exists and is unique in a neighbourhood of 0y with
probability converging to one as n — oo, and éc —p 00. Furthermore, nl/z{éc -0} —4
N(0,Ty), where Ty = I 'Te™" and T is defined in section 3.

Remark 1. A consistent estimator of T'c is I'c = n™! S (a +i',-)®2, where G; and ¥; are
obtained from u, and r; by replacing 0y, e(0o, ?), R;O)(Bo7 t), Ao(¢) and n,(By/2) (k =0, 1) with
éc, Ec(0c,1), R (957 1), Ac() and i, (Bc/2). In addition, a consistent estimator of I is

=n' 0, jo {s eC, )/SY (0c, 1) — EZ(Oc, 1)} dNi(r), where SP(0,1) = aSU) (8, 1)/06.
Thus To=0"T.I"! consistently estimates I'y.

Remark 2. As in section 2, /ic(~) can be shown to be asymptotically normal and uniformly
consistent with a covariance function which can be consistently estimated.

7. Discussion

The approximately corrected score estimator by Nakamura (1992) was developed under the
restrictive assumptions of the classical error model and a normally distributed error with
known covariance matrix. Recently, Kong & Gu (1999) proved the consistency and
asymptotic normality of this estimator and provided a modification for non-normal error.
When the error € is normally distributed with a known covariance matrix, n, () (k=0,1)
defined in section 3 can be written out in terms of B and the covariance matrix of €. Then
replacing 0,(B) by m.(B) (k=0,1) and disregarding the validation set and weight, the
estimators proposed in our section 3 would reduce to Nakamura’s estimator. In addition,
assuming a known moment generating function for €, replacing 0, () by n,(B) (k =0,1) and
disregarding the validation set and weight, our estimators would reduce to the modification
suggested by Kong & Gu (1999).

Nakamura (1992) and Kong & Gu (1999) assume that the covariance matrix or the
moment generating function of the error is known. We have removed these assumptions by
making use of a validation set or replicate measurements, which are two general schemes to
study measurement error problems (Carroll et al., 1995, p. 12). We have developed formal
inference procedures for these two practical settings. Kong & Gu (1999) only mentioned in
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passing that the error parameters might be estimated from a validation set or replicates,
and did not account for the extra variability due to such estimation in their variance
estimators.

Nakamura (1992) and Kong & Gu (1999) confined their attention to the classical additive
measurement error model requiring the surrogate be unbiased for the true covariate. The
methods developed in section 4 pertain to a more general error model which allows biased
surrogates. This generalization is essential in many real applications. Another new feature of
this work is the clear distinction between covariates that are measured with error and those
without error.

Under the classical error model, Buzas (1998) provided a method to correct the partial
likelihood score using the moment generating function of the error distribution, which is
assumed to be known. In correcting the partial likelihood score function, Buzas proposed to
replace S©(0,7) with n=' S, ¥i(¢) exp(B"Z; + y"X,), where Z; is the predicted value of Z;
based on the regression of W; on X;, and if X; does not exist, i.e. no covariate is measured
precisely, Buzas proposed to use just 7! Z;;l Y;(¢) in place of S()(0,¢). The efficiency of this
estimator depends on the existence of X;, and on the relation of Z; and X; if X; does exist. The
techniques developed in this paper can potentially be used to study the asymptotic properties
of the estimator suggested by Buzas.
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Appendix

P
i=

Regularity conditions. For a vector a = (ay, .. .,a,,)T, let |a| = ( laf)l/z. In the case of a

single covariate, the following conditions are needed.

1. Ay(¢) is continuous and Ay(t) < co.
2. E(|Z1]%) < o0, E(ler]?) < .
3. There exists a compact neighbourhood % of f, such that:
(a) E{suppey 121 exp(pZ1)} < o0; (b) E{supye |ei]> exp(Ber)} < oo;
(©) E{supyey 121 exp(2BZ1)} < o0; (d) E{supyey le1]* exp(2fer)} < oc.
4. P{Y(z) =1} > 0.
5. T is positive definite.

For the case of multiple covariates in section 3, we need to restate conditions 2 and 3:

2. E{sup,cq [Hi (0} < o0, E(lei ) < .
3’. There exists a compact neighbourhood % of B, and a compact neighbourhood % of y,
such that:
(a) E{SuPze[o,r],ee/zw Hl(t)|2 exp(OTHl(t))} <00
(b) E{suppey €1 exp(pler)} < oo
(©) E{supicip,q0emxe [Hi () exp(20"H, (1))} < oc;
(d) E{supﬁe% 3 |2 exp(2|3Te])} < 0.

We also need a condition for time-dependent covariates:
6. For all sample paths of X;(-), |X;i(0)| + J; | dX;i(r)| < oo, where Xj;(-) is the jth component
of Xl()
Besides the above conditions, we need one more for the generalized error model:
7. There exists a compact neighbourhood %, of 0 such that: E{supte[oﬂme% |Z1|2 exp
(ﬁTZI)} < 00.

For the situation of replicate covariate measurements studied in section 7, we replace €; in
conditions 2" and 3’ by €;;, and also modify part (d) of condition 3’ to be E{supyc, len|?
exp(BTe;/2)} < co. We label them as conditions 2” and 3”. An additional condition is
required:

8. The distribution of €;; is symmetric with respect to 0, i.c. €); and —e;; are identically
distributed.
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Proof of theorem 1. We decompose Uc(fy, w) into two terms:

n

Uc(By, ) = Z(éi + &) Jr{éizi + EW — Ec(Bos t, a))}{dN,-(t) - kf‘o) (ﬁo))’i(f)d/lo(t)}

i=1
+Zg, oZ) J &2+ G — Ec(Bost,0) YR (B) Y (0)d Ao ). (8)

We further split the first term into By + By + B3 + B4, where

n

B =) (& + k) J;{f,z,- + & —e(By ) {dNi(0) = RO (B) Vi) Ao (1)},
i=1

By = (& + &) J;{e(ﬂm 1) = Ec(Po, t, w) H{dNi(t) — exp(BoZi) Yi(1)d Ao(1) },

i=1

B = 03 & | {elhot) = EelBur.)Hexp(z) = 15" (B expBulh) o) Ao()
i=1

Ba = ofn (Bo) — 0 (o)} 36 L{W — Ec(Bost.0) }exp(Bo 1) (1) dAo(2).
i=1

It follows from the arguments of Andersen & Gill (1982) that supyc,.<;pey
|[Ec(B,t,w) —e(p,t)| —p» 0. By expanding %, to include the selection of the validation set
and the surrogate covariates, we see that n~'/2B, is a martingale integral with variance
converging to 0. Thus n~'/2B;, —, 0.

Let J,(t) =n V230 Edexp(BoZ:) — 15" (Bo) exp(BoWi)} Jy Yi(s) dAo(s). Then n~'/2B; =
o [i{e(Bo,t) —Ec(By,t, w)}dJ,(1). In light of conditions 3(c) and 3(d) and the fact that J,(¢)
is the difference of two non-decreasing processes, J, () converges weakly to a process J(¢) with
continuous sample paths by ex. 2.11.16 of van der Vaart & Wellner (1996, p. 215). By the
strong embedding theorem (Shorack & Wellner, 1986, pp. 47-48), there exists a new
probability space in Wthh sup,eof] |S (/)’O,t ) — (24 0@)s® (By,1)] —as. 0 (k=0,1) and
Ju(t) —as J(£). Since s (o, t, w) is monotone in ¢ and left- contmuous lem. 1 of Lin et al.
(2000) implies that [; S ?0 (Bost, )~ d(s) —as. [1{ (2 + )5 (By,2)} " dJ (s). Another use of
this lemma yields [ EC (Bot,)dJy(s) —as. |5 e(Bo,1)dJ (s). Likewise, [;e(By,t)d]y(s) —as.
Jo e(Bo,1)dJ (s). Hence n~!/2B3 —,. 0. Returning to the original probability space, we have
n—l/233 —p 0.

Note that

n*1/2B4 = wn|/2n62(‘80){ﬁ0(ﬁ0) B ]10(/30)}&
- E{JO{VVI = e(Bo, 1)} exp(Bo )Yy (’)dAo(t)} + 0p(1).

By (3) and (4), we have n'2By=ow(a/a)e ny*(Bo)m (Bo)n~'* 0 Ei{exp(Boe)
—1o(Bo)} + 0p(1).

By simple algebraic calculations, the second term of (8) is equal to wiy2(B)i; (Bo) Sy &
Jo exp(Bo W) Y;(1)dAo(t). We can split this into Bs + Bs, where

B = ony (o () Y- & | exp(h) 104000,
i=1

Bs = o{ity>(Bo)in (Bo) — my”(Bo)ni (Bo) } Z & L exp(Bo W) Yi(t) dAo(1).
=1
It is easy to see that B| + Bs = > o, (&ui + wzivl—), where
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u; = JT{ZI - e(ﬂ07t)}djwi(t)7
j (7 — e(Por )} LN () — 1y (Bo) exp(Bo W) Yi(t) d Ao (1)}

g (ﬁo)m(ﬁo)J exp(Bo ) Yi(1) dAol),

and M;(t Io s)exp(ByZ;) dAo(s). Because u; is a martingale integral for each i,
E(u;) = 0 It follows from (3) and (4) that E(v;|# ;) = u;, which implies that E(v;) = 0.
For Bg, we note that n~! S0 | & [ exp(BW)Y;(t) dAo(t) —as. apny(By). Hence

2B = w(a/x)pny > (By)n 2 ZC:[”IO Bo){exp(Boei)ei — n1(Bo)}
= 27 (Bo){exp(Boei) — ’70(130)}] + 0p(1).

It then follows that n='/2(By + Bg) = am™ V2 31| &ri + 0p(1), where

= (a/a)pny > (Bo) {no(Bo) exp(Boer) e — mi (Bo) exp(Boei)}-
Summarizing the above results, we have
n~2Uc(By, ) = n~'? Z(ff“i + & + &) + o,(1), )
i1

which is essentially a normalized sum of zero-mean i.i.d. random variables. By assumption,
¢; is independent of {Y;(¢),N;(¢),Z;}, which implies that u; and r; are independent. Clearly,
cov(&u, Evi) = 0 and cov(&ry, ;) = 0. Tt is easy to see that var(u;) = T, var(v;) = I', and
var(r) = I'., so that var(é u; + o r + wé vy) = I'c. Tt then follows from the central limit
theorem that n~'/2Uc (B, @) —4 N(0, T'¢).

Proof of theorem 2. Let D(B, ) = —n~'0Uc(B, )/OB. Then
o) =1 36+ o) [ OBt 08N (),
i=1 0
where OEc (B, 1, ) /0 = SC (B,1,0) /S (B. 1, ) — S (.1, 0)* /S (B, 1, )* and S (B, 1, ) =

(Cl)(ﬁ, t,)/dp. It follows from condition 4 and th. III.1 of Andersen & Gill (1982) that
sup ‘8EC(ﬂat7w)/aﬂ7U(ﬁvt)| —p 0. (10)

tel0,7],pe2
Hence
D(p0) = (34 03) | o(B. 05V (B)dA0(0) = (o + 02T (1)
0
By th. III.1 of Andersen & Gill (1982), condition 1 and (10), we see that the convergence in
(11) is uniform for € 4, i.e.
sup|D(B, ) — (e + wa)I'| —, 0. (12)
pe
For any positive w, the limit is non-negative everywhere and positive at ff, by condition 5.
Theorem 1 implies that n~!Uc(By, ) —, 0 for any w. It then follows from the proof of

theorem 2 of Foutz (1977) that Bc exists and is unique in 4 with probability converging to one
as n — oo, and S —, fy.
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The Taylor series expansion yields n'/2(B. — B,) = D~ (8", w)n~ "2 Uc(B,, ), where f* is on
the line segment between B~ and f,. By (12) and the consistency of f., we have

D(p*,w) —, (¢ + wa)[. Then the theorem follows from the asymptotic normality of
nil/zUC(ﬁ(),U)).

Estimation of variance I'y. Based on (12), (o + wa)l’ can be estimated consistently by
—n~'0Uc (B, @)/OP. We can estimate I' by

f - (& + w&)71n71 i(él + wzx) J;{Sg)(EC7 2 w)/Sg))(BO t U)) - EC(.EC7 t w)z}dNt‘([)'
i=1

It is not difficult to see that ¢ can be consistently estimated by @ = n~! "%, ;. Thus, we can
estimate I'. by I.= (&/8)* @5 * (B (Be)in (2Bc) — 2ﬁo(ﬁc)’71(lic)ﬁ1(2lfc) + ﬁ%(ﬁg)x
710(2Bc)}, which is also consistent. In addition, we can estimate I', by I', = (n&)™" S &b
where  &; = [{{W; — Ec(Bc,t,0) HdNi(t) — iy ' (Be) exp(Be W) Yi(t)dAc ()} + itg* (Be)in (Be)
Jo exp(BcW;)Yi(1)dAc(t) (i=1,...,n). The consistency of I', follows from the law of large
numbers, together with the consistency of . and the uniform consistency of/fc(~) given in
theorem 3. Thus, I'y is consistently estimated by I'y = I'c/{(& + wa)I'}?, where I'c = &I+
o* @l +al).

Proof of theorem 3. We can write n'/{Ac(t) — Ao(t)} = Dy () + Da(t) + Ds(t) + 0,(1),

where
Di(t) =n'? ZL 21 x,~<s>11%§°><i3(;> 721 Yf<s>1A Y (By) e
Dzm_nwfj;ﬂ jil%)lkﬁ(’)(ﬁo)_ anﬁli?(S)lRf-o)(ﬁo) e
o= i”] LZYCZN;“)”(/%O> o

and Aj(1) = [;1{3"_, Yi(s) > 0}dAy(s). By Taylor expansions,

D(t) = h(t)n™ 2> “{&ui + (i + Eri) } + 0p(1),

i=1

where h(f) = — Jj e(By,s)dAo(s)/{(« + wa)I'}. Clearly,
D (1) = (a/x)my " (By) Ao(t)n /2 Z Si{exp(Boei) — mo(Bo)} + 0p(1),
i=1
and

_aeN e " dMi(s) (" dNi(s) — Yi(s)ng ' (Bo) exp(Bo W) d Ao (s) o
0= Z{fj s, S (f) J o

Summarizing the above results for Dy (¢) (k = 1,2, 3), we get
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n'? {Ac(r) - —n*WZ{flu, ) + EBilt) + &)} + 0p(1)
where

o) = o+ [ 0

6i(z):wh(t)v,-+LdN() Yi(s)ng ((ﬁgo)’ejp(ﬁo )dAo(s)

7i(1) = oh(t)ri + (@/2)ng " (Bo) Ao () {exp(Boer) — no(Bo)}-
It is easy to see that the means of #;, ¥; and 7; are all 0, and #; and #; are independent for every i.
Furthermore, cov(#;, ;) =0 and cov(r;,7;) =0. Let ¢,(t,s) = E{u; ()i (s)}, ¢,(t,s) =
E{1()01(s)} and ¢,(¢,5) = E{F1(¢)71(s)}. Write

P(t,5) = ad,(t,5) + o, (,5) + 0, (1,5). (13)

It can be shown that #,(¢), 9;(¢) and 7(¢) are sums of monotone functions in ¢. It then follows
from ex. 2.11.16 of van der Vaart & Wellner (1996) that n'/2{A¢(f) — Ay(f)} converges weakly
to a zero-mean Gaussian process with covariance function ¢(¢,s).

Using the above decomposition for A¢(r) — Ag(t), we can show the uniform consistency of
Ac(:).

Proof of theorem 4. As in the proof of theorem 1, we can show that
ﬂ71/2U0(90> Q) = n'/2 Z(fiui +&Qr; + EiQVz‘) +0p(1), (14)
i1

where
- j;{H,-m ~ e(0.1)}dM(1),
- [;{ﬁ,m — e(B0, ) }{dN:(1) — 15" (By) exp(OTFL (1) K(1)d Ay (1)}

=700 || exp@R 0" | (15
0 4
= ls)ony B xopfen | 0% M.
Here M;(t fo s) exp(0) H,(s))d Ao (s).

Proof of theorem 6. Since the asymptotic normality of n~'/2Ucx(0g, Q, a9, by) has already
been proved in theorem 4, we expand n~'/2Uc(8y, 2, a,b) around (ag, b):
}’lil/zUc(eo, Q, fl, f)) = 1171/2U(;(00, Q, aop, b()) + nilaUc(eo, Q, a*, b*)/(‘?a nl/z(ﬁ — a())
+n19Uc(8y, 2, 2%, b*) /b n'/%(b — by),
where (a*T,b*T)" is on the line segment between (ﬁT,BT)T and (ag,bOT)T. Since a —, ayp and

B—>,, by, we have a* —,ap and b* —, byg. Through some tedious but straightforward
calculations,

n'oUc (09, Q,a%,b*)/0a —, —apQJB, ",
n'OUc(8), Q,a%,b") /0b —, aQ(T,By'B; — JB; 'py).
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Condition 7 is needed to guarantee the consistency of (B, a,b) for n,(B) (k= 0,1,2). Let
iz = E(Zy;) and 0%, = var(Z,;)(I = 1,...,p). By the properties of the least-squares estimators,

R 1 s
n'2(a; — agr) = o 1/2 Z &E{(o% + uz)en — ugZuen } + 0p(1), (16)
Zl i=1

I’ll/z(b1 bo[ ——}’lil/zzé ﬂZleil+ZilEil)+op(1)~ (17)
It follows from theorem 4 that

nPUc(0,Q,a,b) = n~'/2> (G + EQr; + EQq; + EQV)) + 0,(1), (18)
i=1
where q; = (2/x)[—@JB;'e; + T,B;'BiI';, {dlag(Zl) n,te ], and w;, v; and r; are defined
as in (15), but with I:I,-(t) replaced by H () in vi. We see that TI',, =cov(r,q),
I’y =cov(q;,r;) and I'q = var(q,), while q, dnd u; are uncorrelated. The theorem readily
follows.

Estimation of Ty. For k=0,1,2, let nk([i) i, (B,a,b), and for k=01, let
RY0,)=R"¥(0,1,a,) and S¥(8,1,Q) =5V (0,1, Q a,b). Also let Ec(0,1,Q) =
Ec(0,7,9Q,a,b) and H;() = H(z,a,b). We then deﬁne R, (9 1) = (?R (0, 1)/080. It is easy to
see that

®2

R (0,1) = & exp(8TH, (1)) H2 (1) + &y (B) exp(8TH, (1)) {H (1) — 7ig " (B) I, (BYHL(1) "

— iy (BH:(O)m (B) I + 205 (B) I (B)IT — 7y (ﬁ)Jﬁz(B)JT} :

Let S 20,1,9) =n"! Z Yi(t)AR @ (9, t). We can estimate I' consistently by I' = (&I, ,+
Q) 'n 1(’?UC(OC,Q a,b) /09 Where

oUc(0,Q,4,b)
o0

’ZAJ {{ 0..2)} I{S(CZ)(O%Q)—Ec(ﬂ,z,ﬂ,ﬁ,f))®S(Cl>(6,t,9)}}d]\7i(z).

A*Q@Z

1 V., where

Also, we can estimate I'; consistently by I‘* =n '3
Vi = JO{I:Ii(t) — Ec(8c, 1, Q)}aNi(1) - iy (Be) exp(OH (1) Yi(1)dAc (1))

Ty (ﬁaj exp(OFFL (1)) i(0)dAc (03 (Be):

A consstent estimator for I is T, = (/260 (o) in(28e i (Bc) —io(Be)i (o)
1, (2Bc) — 1o(Be)my (2Bc) ® 'Il(ﬂc) +1 (ﬂ i (25c)}JT Let T .=Y1,&{B, ( —a)
fZl-}@‘z/(ZF1 & —2) where By = diag(b). Let aZ, be the sample variance of all the Z,ls of
subjects in the validation set, 62 = (6%, .. aép) and I'z; = diag(6%). We also define I'z, to
be the p x p matrix with estimated cov(Z;, Z;;)cov(ey;, e1,) as the (i, j)th element, and let T', be
the first p columns of I. By plugging all these estimators into the expressions defining I', Iy,
and I'y,, we get consistent estimators Fq, I‘r,, and Fq,, respectlvely Then we estimate I'y
by Ty =T (a1, + aQ) ' T5(al,,, +aQ T)"'T!, where T% = ol + QI + oI, + ol +
ar,, +oar,)QT.
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Proof of theorem 7. Let

) " dNi(s)
AC(t7aO7b0) = ZJO n <(0) /4 '
i=1 - YJ(S)RJ (OC,S7 aO7b0)

J=1

The Taylor expansion of A¢(¢) around (ag,by) yields
n'2Ac(t) = n'2Ac(t,a0,bo) + (DY) 0% (a — ag) + (D) n'/2(b — by), (19)

where

Y(s)ORY" (B¢, s,a",b") /da d Ni(s)

1’!71
=1

n t
D=ty ;
i=1 Y0 A (0) A

{n1 Yi(s) ,(-0)(9c7s7a*7b*)}
=1

J

n

M:

'S Yi(s)0RY (B, 5,27, b) /Ob dNi(s)

n t
_ =1
D = —n" E :J ; 2
n
i=1 J0

{nfl_ Y,.(s)zéj.‘”(éc,s,a*,b*)}
J

By applying to /fc(t, ap,bg) a decomposition similar to that used in the proof of theorem 3,
calculating the limits of D and D%, and plugging them, along with (16) and (17), into (19), we
can approximate n'/2{A¢(t) — Ay(r)} by a sum of n i.i.d. zero-mean terms. Then the theorem
can be established in a similar fashion as theorem 3.

1

Proof of theorem 8. This proof is parallel to that of theorem 1. First we write

Uelo) =Y Jf{ﬂm — Ec (89, ) HaN;(1) — R" (80, 1) Yi(1)d Ao 1)}

i=1 Y0

3 E{ﬁ"(t) — Ec(80,1)}R” (80, ) Vi(1)d Ao (). (20)
i=1

Then we split the first term into B; + B, + B3 + B4, where

n

Bi=3 D) — 00} {aN ) — R 00,0V (A0 (0),

B, = Z ;{ewo,r) — Ec (001} {dNi(r) — exp(O7 H, (1) %,(1)d Ao 1)},

B; = ; ;{e(em 1) — Ec(80, 1)} {exp(05 Hi (1)) — 5 (Bo/2) exp(85 Hi (1))} Yi(1)d Ao(7),
B, = Z ;{PL»(r) — Ec(00, ) HR (89, 1) — R (8, 1)} Yi(1)d Ao (1).

As in the proof of theorem 1, we can show that n~'/?B, —, 0 and n~'/?B; —,, 0 via martingale
theory and empirical process theory. We can also show that

- o> (Bo/2 2
By = 0> {exp(B (Wa — Wa)/2) — (o2} 0 (P A /2 )
i=1 q
The second term on the right hand side of (20) is equal to
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n

>~ [[expt0pa o102 b2
i=1 70 q

which can be split further into Bs + Bg, where

n T -3
S ] Rl 2)},
Be— Z L exp(OHL() 10 Ao ()| 0 B0/ (Bo/2) . n” (Bo/2)y (Bo/2)] .

Note that By +Bs = >}, w;, and we can show that E(u;) =0 (i = 1,...,n). We also have

Wi - W} ~2n(B0/2) [
Oq

i (Bo)
0,

Bs = 402”:
i

- 2'103(50/2){ exp(Bg (Wi — W) /2) — ﬂ%(ﬁo/z)} {

2‘1102(%/2){ exp(By (Wi — Wi)/2) {

+o0,(1).

M1 (Bo/2)
0,

l

We see that By + Bs =Y ., 1; + 0,(1). It is not hard to see that E(r;) =0 (i=1,...,n). The

asymptotic normality of n~/>Uc(6y) follows easily.

Proof of theorem 9. Let S(Cz) 0,1) = 688)(9, t)/00. As in the proof of theorem 2, we can show
that Supte[(};],ﬂe%x% |S(C%) (97 t) — s (9» t)| —p 0, SuPte[OAr],Be/%xW |8EC(07 t)/ae_ V(97 t)| —p 0, and

SUD;c(0,7],0c8x%

—n7'9Uc(0)/00 —T'| —, 0, where s (0,7), v(0,¢) and T are defined in

section 3. Then the existence, uniqueness and consistency of 0 can be proved in the same
manner as in theorem 2. Asymptotic normality of n'/?(8¢ — @) then follows from the Taylor

expansion.
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