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S

The semiparametric accelerated failure time model relates the logarithm of the failure
time linearly to the covariates while leaving the error distribution unspecified. The
present paper describes simple and reliable inference procedures based on the least-squares
principle for this model with right-censored data. The proposed estimator of the vector-
valued regression parameter is an iterative solution to the Buckley–James estimating
equation with a preliminary consistent estimator as the starting value. The estimator is
shown to be consistent and asymptotically normal. A novel resampling procedure is
developed for the estimation of the limiting covariance matrix. Extensions to marginal
models for multivariate failure time data are considered. The performance of the new
inference procedures is assessed through simulation studies. Illustrations with medical
studies are provided.
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1. I

The linear regression model, together with the least-squares estimator, plays a
fundamental role in data analysis. For potentially censored failure time data, the least-
squares estimator cannot be calculated because the failure times are unknown for censored
observations. A number of authors (Miller, 1976; Buckley & James, 1979; Koul et al.,
1981) extended the least-squares principle so as to accommodate censoring. The estimator
of Miller (1976) requires that the censoring time satisfy the same regression model as the
failure time, while the estimator of Koul et al. (1981) requires that the censoring time
be independent of covariates. Miller & Halpern (1982) found that the Buckley–James
estimator is more reliable than those of Miller and Koul et al.
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The asymptotic properties of the Buckley–James estimator were studied rigorously by
Ritov (1990) and Lai & Ying (1991). They showed that, with a slight modification to the
tail, any consistent root of the Buckley–James estimating function must be asymptotically
normal and that the estimator is semiparametrically efficient when the underlying error
distribution is normal, which is a well-known property of the least-squares estimator for
uncensored data. The limiting covariance matrix, however, involves the unknown hazard
function of the error term and it is therefore difficult to estimate it directly.
The Buckley–James estimator is a root of an estimating function which is discontinuous

and may have multiple roots even in the limit. To facilitate computation, Buckley & James
(1979) proposed a semiparametric  algorithm which iterates between imputation of
censored failure times and least-squares estimation. The convergence of the algorithm is
not guaranteed. In fact, it is known that the iterative sequence may become trapped in a
loop, oscillating between two or more points.
As a result of its weak requirements on the censoring mechanism and its comparable

efficiency with the classical least-squares estimator, the Buckley–James estimator is a
natural choice for the accelerated failure time model. The developments of this estimator
have been largely academic for two major reasons. First, there does not exist a com-
putationally efficient algorithm that guarantees a consistent solution. Secondly, there is
no reliable method for estimating the sampling distribution of the estimator or the standard
error thereof.
A key step in the Buckley–James iterative algorithm is the initial estimator. As shown

in Ritov (1990) and Lai & Ying (1991), the estimating function is locally asymptotically
linear. Using this result, we can show that, if the initial estimator is consistent, then,
for each fixed m, an m-step estimator must also be consistent. In addition, if the initial
estimator is asymptotically normal, then so is the m-step estimator.
In the light of the foregoing findings, we propose to approximate the consistent root of

the Buckley–James estimating equation by using a consistent estimator as the initial value
in the Buckley–James iteration. To be specific, the initial value is chosen to be the rank
estimator with the Gehan (1965) weight function (Prentice, 1978; Tsiatis, 1990), which
can be easily calculated via the linear programming technique (Jin et al., 2003). To estimate
the limiting covariance matrix, we develop a resampling scheme which involves similar
iterations. The resampling approach shares the spirit of that of Jin et al. (2003). However,
the actual procedure is very different because the Buckley–James estimating function is
not related to the Gehan statistic and involves the Kaplan–Meier estimator of the error
distribution in a complex manner. We provide rigorous justifications for the proposed
parameter estimator and resampling procedure, and demonstrate their usefulness through
simulated and real data.

2. A     B‒J 

Suppose that there is a random sample of n subjects. For i=1, . . . , n, let T
i
and C

i
be,

respectively, the failure time and censoring time for the ith subject, and let X
i
be the

corresponding p-vector of covariates. As usual, assume that T
i
and C

i
are independent

conditional on X
i
. The data consist of (TB

i
, d
i
, X
i
) (i=1, . . . , n), where TB

i
=min (T

i
, C
i
),

d
i
=1
{T
i
∏C
i
}
, and 1{.} is the indicator function.

Write Y
i
= log T

i
. The semiparametric linear regression model takes the form

Y
i
=X∞
i
b
0
+e
i
, (1)
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where b0 is a p-vector of unknown regression parameters, and ei (i=1, . . . , n) are
independent error terms with a common but completely unspecified distribution function
F. Model (1) if often referred to as the accelerated failure time or accelerated life model
(Cox & Oakes, 1984, pp. 64–5; Kalbfleisch & Prentice, 2002, pp. 218–9). This model is
intuitively appealing as it provides a direct characterisation of the effects of covariates on
the failure time. One may replace the log-transformation of the failure time in (1) by a
different transformation.
For uncensored data, the classical least-squares estimator is obtained by minimising the

objective function

n−1 ∑
n

i=1
(Y
i
−a−X∞

i
b)2 (2)

with respect to a and b, where a pertains to the mean of the error distribution. The
minimisation of (2) yields the following estimating equation for b0 :

∑
n

i=1
(X
i
−X9 ) (Yi−X∞ib)=0, (3)

where X9 =n−1 Wn
i=1
X
i
. Of course, the resulting estimator has a simple closed-form

expression and its covariance matrix can be easily estimated.
In the presence of censoring, the values of the T

i
associated with d

i
=0 are unknown,

so that (3) cannot be used directly to estimate b0 . Buckley & James (1979) modified (3)
by replacing each Y

i
with E(Y

i
|TB
i
, d
i
, X
i
), which is approximated by

YC
i
(b)=d

i
YB
i
+ (1−d

i
)C ∆2ei(b) udFCb (u)1−FC

b
{e
i
(b)}
+X∞
i
bD ,

where YB
i
= log TB

i
, e
i
(b)=YB

i
−X∞
i
b and FC

b
is the Kaplan–Meier estimator of F based on

the transformed data {e
i
(b), d

i
} (i=1, . . . , n), that is

FC
b
(t)=1− a

i:e
i
(b)<t
A1− d

i
Wn
j=1
1
{e
j
(b)�e
i
(b)}
B . (4)

Define

U(b, b)= ∑
n

i=1
(X
i
−X9 ){YCi (b)−X∞ib},

or

U(b, b)= ∑
n

i=1
(X
i
−X9 ){YCi (b)−Y9 (b)− (Xi−X9 )∞b},

where Y9 (b)=n−1 Wni=1
YC
i
(b). Then the Buckley–James estimator b@BJ is the root of

U(b, b)=0. It is easy to see that U(b, b) is neither continuous nor monotone in b. Thus,
it is difficult to calculate the estimator, especially when b is multi-dimensional.

3. N  

Following Buckley & James (1979), we can ‘linearise’ the estimating function by first
fixing an initial value b and then solving the equation U(b, b)=0 for b. This operation
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leads to b=L (b), where

L (b)=q ∑n
i=1
(X
i
−X9 )E2r−1C ∑n

i=1
(X
i
−X9 ){YCi (b)−Y9 (b)}D .

Here and in the sequel aE0=1, aE1=a and aE2=aa∞. Continuing this process yields a
simple iterative algorithm,

b@
(m)
=L (b@

(m−1)
) (m�1). (5)

It can be shown through the arguments of Lai & Ying (1991) that L (b) is asymptotically
linear in b. Thus, if a consistent estimator of b0 is chosen as the initial value in (5), then, for
any fixed m, b@

(m)
should also be consistent. In addition, b@

(m)
is expected to be asymptotically

normal if the initial estimator is asymptotically normal.
A consistent and asymptotically normal initial estimator of b0 can be obtained by the
rank-based method of Jin et al. (2003). We set the initial estimator b@ (0) to the Gehan-type
rank estimator b@G , which can be calculated by minimising the convex function

∑
n

i=1
∑
n

j=1
d
i
{e
i
(b)−e

j
(b)}− ,

where a−=1
{a<0}

|a|. This minimisation is a simple linear programming problem (Jin et al.,
2003). Given b@ (0) , the iteration in (5) involves trivial calculations of the least-squares
estimators.
We show in the Appendix that, for each fixed m, b@

(m)
is consistent and asymptotically

normal. In addition, b@
(m)
is asymptotically a linear combination of the Gehan estim-

ator b@G and the Buckley–James estimator b
@
BJ in that

b@
(m)
= (I−D−1A)mb@G+{I− (I−D−1A)m}b

@
BJ+op (n−D ), (6)

where I is the identity matrix, D) lim
n�2
n−1 Wn

i=1
(X
i
−X9 )E2 is the usual slope matrix

of the least-squares estimating function for uncensored data, and A is the slope matrix of
the Buckley–James estimating function defined in the Appendix.
When the level of censorship shrinks to zero, the matrix A approaches D. Then the first

term on the right-hand side of (6) becomes negligible and every b@
(m)
approaches the usual

least-squares estimator. If the iterative algorithm given in (5) converges, then the limit
solves exactly the original Buckley–James estimating equation. Even if the iterative
sequence does not converge, the estimators are still consistent and asymptotically normal.
In terms of the large-sample behaviour characterised by (6), it can be shown that, if the
hazard function l(y) of the error distribution is nondecreasing in y, as is the case in
particular with the normal, logistic and double-exponential distributions, then the matrix
D−A is nonnegative definite, which implies that (I−D−1A)m approaches 0 or b@

(m)
approaches b@BJ as m tends to 2.
It follows from (6) that b@

(m)
is asymptotically normal, as shown formally in the Appendix.

Since the limiting covariance matrices of both b@G and b
@
BJ involve the unknown hazard

function l( . ), the limiting covariance matrix of b@
(m)
does too. Thus, we develop a resampling

procedure to approximate the distribution of b@
(m)
.

Let b@*G be a minimiser of

∑
n

i=1
∑
n

j=1
Z
i
Z
j
d
i
{e
i
(b)−e

j
(b)}− ,
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where Z
i
(i=1, . . . , n) are independent positive random variables with E(Z

i
)=var(Z

i
)=1.

This is a slight modification of the one given in Jin et al. (2003). We further define

L*(b)=q ∑n
i=1
Z
i
(X
i
−X9 )E2r−1C ∑n

i=1
Z
i
(X
i
−X9 ){YC *i (b)−Y9 * (b)}D ,

where

YC *
i
(b)=d

i
YB
i
+ (1−d

i
)C ∆2ei(b) udFC *b (u)1−FC *

b
{e
i
(b)}
+X∞
i
bD ,

FC *
b
(t)=1− a

i:e
i
(b)<t
A1− Z

i
d
i

Wn
j=1
Z
j
1
{e
j
(b)�e
i
(b)}
B ,

and Y9 * (b)=n−1 Wni=1
YC *
i
(b). Finally, we define the iterative sequence b@*

(0)
=b@*G and

b@*
(m)
=L*(b@*

(m−1)
) (m�1).

In the Appendix, we show that the conditional distribution of nD (b@*
(m)
−b@
(m)
) given

the data (TB
i
, d
i
, X
i
) (i=1, . . . , n) converges almost surely to the asymptotic distribution

of nD (b@
(m)
−b0 ). To approximate the distribution of b

@
(m)
, we obtain a large number of

realisations of b@*
(m)
by repeatedly generating the random sample (Z1 , . . . , Zn ) while fixing

the data (TB
i
, d
i
, X
i
) (i=1, . . . , n) at their observed values. The empirical distribution of

b@*
(m)
can then be used to approximate the distribution of b@

(m)
. Confidence intervals for

individual components of b0 can be constructed by the Wald method or from the empirical
percentiles of b@*

(m)
.

Remark 1. Jin et al. (2003) presented a resampling approach to the approximation of
the distributions of general rank estimators by perturbing L 1 loss functions. Their approach
is not applicable to the present setting because the function L defined in (5) pertains to a
least-squares estimating function with imputed failure times and cannot be expressed as
a weighted Gehan estimating function. In contrast to the resampling procedure of Jin
et al. (2003), L* is defined directly through perturbing the X

i
, Y
i
and FC

b
( . ), and does not

have an equivalent minimisation expression. The resampling scheme needs to account
properly for the sampling variations due to both the least-squares estimation and the
imputation of censored failure times. The perturbation of FC

b
( . ) is particularly intriguing

and delicate. For example, if the Z
j
in the denominator of FC *

b
( . ) were omitted,

then nD{FC *
b
0

( . )−FC
b
0

( . )} would still provide a valid approximation to the distribution of
nD{FC

b
0

( . )−F(.)}, but the resampling distribution for b@ would no longer be valid.

Remark 2. Instead of least-squares estimation, one can employM-estimation, replacing
the square loss in (2) by a general loss function. In fact, extensions of the Buckley–James
estimator to general M-estimators were studied by Ritov (1990) and Lai & Ying (1994).
We can again use the Gehan estimator as the initial value and develop a similar iterative
algorithm and resampling scheme. All the theoretical results continued to hold.

4. E     

4·1. Multiple events data

Multiple events data arise when a subject can potentially experience several types of
event or failure. For k=1, . . . , K and i=1, . . . , n, let T

ki
be the time to the kth failure

of the ith subject, let C
ki
be the censoring time on T

ki
, and let X

ki
be the corresponding
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p
k
-vector of covariates. We assume that (T

1i
, . . . , T

Ki
) is independent of (C

1i
, . . . , C

Ki
)

conditional on (X
1i
, . . . , X

Ki
). The data consist of (TB

ki
, d
ki
, X
ki
) (k=1, . . . , K; i=1, . . . , n),

where TB
ki
=min(T

ki
, C
ki
) and d

ki
=I
{T
ki
∏C
ki
}
.

The marginal accelerated failure time models take the form

log T
ki
=X∞
ki
b
k
+e
ki
(k=1, . . . , K; i=1, . . . , n),

where b
k
is a p

k
-vector of unknown regression parameters, and (e

1i
, . . . , e

Ki
) (i=1, . . . , n)

are independent random vectors from an unspecified joint distribution with marginal
distribution functions F1 , . . . , FK .
Define YB

ki
= log TB

ki
, e
ki
(b)=YB

ki
−X∞
ki
b and

YC
ki
(b)=d

ki
YB
ki
+ (1−d

ki
)C ∆2eki(b) udFCk,b (u)1−FC

k,b
{e
ki
(b)}
+X∞
ki
bD ,

where 1−FC
k,b
is the left-continuous version of the Kaplan–Meier estimator of 1−F

k
based on the transformed data {e

ki
(b), d

ki
} (i=1, . . . , n), which is in the form of (4). We

estimate b
k
through the iterative procedure b@

k(m)
=L
k
(b@
k(m−1)

) (m�1), where

L
k
(b)=q ∑n

i=1
(X
ki
−X9 k )E2r−1q ∑n

i=1
(X
ki
−X9 k )YCki (b)r ,

X9 k=n−1 W
n
i=1
X
ki
, and b@

k(0)
is a minimiser of

∑
n

i=1
∑
n

j=1
d
ki
{e
ki
(b)−e

kj
(b)}− .

Writing B= (b1 , . . . , bK ) and BC (m)= (b
@
1(m)
, . . . , b@

K(m)
), we show in the Appendix that

nD (BC
(m)
−B) is asymptotically zero-mean normal.

Let b@*
k(0)
be a minimiser of

∑
n

i=1
∑
n

j=1
Z
i
Z
j
d
ki
{e
ki
(b)−e

kj
(b)}− ,

where (Z1 , . . . , Zn ) are defined in § 3. Also, define b
@*
k(m)
=L *
k
(b@*
k(m−1)

) (m�1 ), where

L *
k
(b)=q ∑n

i=1
Z
i
(X
ki
−X9 k )E2r−1C ∑n

i=1
Z
i
(X
ki
−X9 k ){YC *ki (b)−Y9 *k (b)}D ,

YC *
ki
(b)=d

ki
YB
ki
+ (1−d

ki
)C ∆2eki(b) udFC *k,b (u)1−FC *

k,b
{e
ki
(b)}
+X∞
ki
bD ,

FC *
k,b
(t)=1− a

i:e
ki
(b)<t
A1− Z

i
d
ki

Wn
j=1
Z
j
1
{e
kj
(b)�e
ki
(b)}
B ,

and Y9 *k (b)=n−1 W
n
i=1
YC *
ki
(b). Writing BC *

(m)
= (b@*

1(m)
, . . . , b@*

K(m)
), we show in the Appendix

that the conditional distribution of nD (BC *
(m)
−BC
(m)
), given the data (TB

ki
, d
ki
, X
ki
)

(k=1, . . . , K; i=1, . . . , n), is asymptotically the same as the distribution of nD (BC
(m)
−B).

Thus, simultaneous inference about B can be carried out on the basis of the empirical
joint distribution of BC *

(m)
, which is obtained by repeatedly generating the random sample

(Z1 , . . . , Zn ).
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4·2. Clustered failure time data

Clustered failure time data arise when the subjects are sampled in clusters such that the
failure times within the same cluster tend to be correlated. Suppose that there are n clusters,
the ith cluster having K

i
members. The K

i
are assumed to be relatively small compared

to n. For the kth member of the ith cluster, let T
ik
and C

ik
denote the failure and censoring

times, and X
ik
the corresponding p-vector of covariates. It is assumed that (T

i1
, . . . , T

iK
i

)
and (C

i1
, . . . , C

iK
i

) are independent conditional on (X
i1
, . . . , X

iK
i

). The data consist of
(TB
ik
, d
ik
, X
ik
) (k=1, . . . , K

i
; i=1, . . . , n), where TB

ik
=min(T

ik
, C
ik
) and d

ik
=I
{T
ik
∏C
ik
}
.

Suppose that the marginal distributions of the T
ik
satisfy the accelerated failure time

model

log T
ik
=X∞
ik
b
0
+e
ik
(k=1, . . . , K

i
; i=1, . . . , n),

where b0 is a p-vector of unknown regression parameters, and (ei1 , . . . , eiK
i

) (i=1, . . . , n)
are independent random vectors. For each i, the error terms e

i1
, . . . , e

iK
i

are assumed to
be exchangeable with a common marginal distribution F. It is also assumed that, for any
i and j, and K∏min(K

i
, K
j
), the vectors (e

i1
, . . . , e

iK
) and (e

j1
, . . . , e

jK
) have the same

distribution.
Define YB

ik
= log TB

ik
, e
ik
(b)=YB

ik
−X∞
ik
b and

YC
ik
(b)=d

ik
YB
ik
+ (1−d

ik
)C ∆2eik(b) udFCb (u)1−FC

b
{e
ik
(b)}
+X∞
ik
bD ,

where 1−FC
b
is the left-continuous version of the Kaplan–Meier estimator of 1−F based

on the transformed data {e
ik
(b), d

ik
} (k=1, . . . , K

i
; i=1, . . . , n).We estimate b0 iteratively

using b@
(m)
=L (b@

(m−1)
) (m�1), where

L (b)=q ∑n
i=1
∑
K
i

k=1
(X
ik
−X9 )E2r−1q ∑n

i=1
∑
K
i

k=1
(X
ik
−X9 )YCik (b)r ,

X9 =Wni=1
WKik=1

X
ik
/Wn
i=1
K
i
, and b@ (0) is a minimiser of

∑
n

i=1
∑
K
i

k=1
∑
n

j=1
∑
K
j

l=1
d
ik
{e
ik
(b)−e

jl
(b)}− ,

which can again be obtained by linear programming.
Let b@*

(0)
be a minimiser of

∑
n

i=1
∑
K
i

k=1
∑
n

j=1
∑
K
j

l=1
Z
i
Z
j
d
ik
{e
ik
(b)−e

jl
(b)}−,

and b@*
(m)
=L*(b@*

(m−1)
) (m�1), where

L*(b)=q ∑n
i=1
∑
K
i

k=1
Z
i
(X
ik
−X9 )E2r−1C ∑n

i=1
∑
K
i

k=1
Z
i
(X
ik
−X9 ){YC *ik (b)−Y9 *(b)}D ,

YC *
ik
(b)=d

ik
YB
ik
+ (1−d

ik
)C ∆2eik(b) udFC *b (u)1−FC *

b
{e
ik
(b)}
+X∞
ik
bD ,

FC *
b
(t)=1− a

1∏i∏n,1∏k∏K
i
:e
ik
(b)<t
A1− Z

i
d
ik

Wn
j=1
WKjl=1

Z
j
1
{e
jl
(b)�e
ik
(b)}
B
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and Y9 *(b)= Wni=1
WKik=1

YC *
ik
(b)/Wn

i=1
K
i
. We show in the Appendix that, for any m, the

random vector nD (b@
(m)
− b0 ) converges in distribution to a zero-mean normal random

vector, whose distribution can be approximated by the conditional distribution of
nD (b@*
(m)
−b@
(m)
) given the data (TB

ik
, d
ik
, X
ik
) (k=1, . . . , K

i
; i=1, . . . , n). Thus, we can use

the empirical distribution of b@*
(m)
to make inference about b0 .

5. S 

We conducted simulation studies to assess the performance of the proposed methods.
For efficiency comparisons, we also calculated the log-rank estimator and the rank
estimator with normal scores. The failure times were generated from the model

log T=2+X
1
+X
2
+e,

where X1 is Bernoulli with success probability 0·5, X2 is normal with mean 0 and standard
deviation 0·5, and e has the standard normal, extreme-value or logistic distribution. The
censoring times were generated from the Un[0, c] distribution, where c was chosen to
yield a desired level of censoring. We considered random samples of 50, 100 and 200
subjects. We estimated b1 and b2 with three iterations. The resampling was based on 1000
realisations of standard exponential random variables.
The results for a sample size of 100 based on 10 000 simulated datasets are summarised

in Table 1. The proposed parameter estimator is virtually unbiased. The resampling

Table 1. Summary statistics for the simulation studies

Rank estimators
Censoring Proposed estimator log-rank normal-scores

Bias    Bias   Bias  

Normal error
b1 0% 0·001 0·203 0·196 0·941 0·001 0·223 0·835 0·001 0·205 0·981

25% −0·002 0·223 0·214 0·938 −0·003 0·244 0·838 −0·002 0·225 0·982
50% −0·003 0·256 0·248 0·938 −0·004 0·275 0·865 −0·003 0·257 0·986

b2 0% 0·001 0·205 0·194 0·932 0·000 0·222 0·847 0·001 0·206 0·984
25% 0·001 0·225 0·213 0·930 0·001 0·244 0·856 0·001 0·227 0·984
50% 0·003 0·257 0·247 0·937 0·004 0·273 0·882 0·004 0·258 0·991

Extreme-value error
b1 0% −0·002 0·262 0·251 0·942 0·000 0·206 1·621 −0·001 0·268 0·956

25% 0·000 0·301 0·288 0·940 0·001 0·241 1·569 0·002 0·316 0·912
50% 0·009 0·372 0·365 0·950 0·008 0·311 1·428 0·016 0·404 0·846

b2 0% −0·001 0·263 0·247 0·934 −0·003 0·211 1·552 −0·002 0·270 0·950
25% 0·001 0·302 0·285 0·935 −0·001 0·245 1·518 0·001 0·318 0·905
50% 0·012 0·374 0·360 0·944 0·012 0·319 1·371 0·019 0·408 0·839

Logistic error
b1 0% 0·002 0·369 0·356 0·942 0·002 0·397 0·863 −0·185 0·544 0·413

25% −0·003 0·391 0·381 0·944 −0·002 0·412 0·900 −0·024 0·551 0·501
50% −0·001 0·432 0·431 0·949 −0·001 0·436 0·981 0·004 0·491 0·772

b2 0% 0·002 0·371 0·351 0·934 0·000 0·397 0·875 −0·191 0·542 0·417
25% 0·003 0·395 0·378 0·937 0·002 0·414 0·911 −0·028 0·540 0·534
50% 0·009 0·435 0·429 0·948 0·010 0·437 0·991 0·017 0·493 0·778

Bias, bias of the parameter estimator; , standard error of the parameter estimator; , mean of the standard
error estimator; , coverage probability of the 95% confidence interval; , mean squared error of the
proposed estimator over that of the rank estimator.
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procedure accurately captures the variability of the parameter estimator, and the
confidence intervals have proper coverage probabilities. The proposed estimator is
slightly more efficient than the normal-scores rank estimator under normal error,
appreciably more efficient under extreme-value error and substantially more efficient under
logistic error. The proposed estimator is less efficient than the log-rank estimator under
extreme-value error, but more efficient under normal and logistic errors.
Figure 1 compares the proposed estimates of b1 after convergence with the estimates

after three iterations and with the initial values based on 1000 simulated datasets under
normal error with sample size of 100 and 25% censoring. In the 1000 datasets, 91% of
the estimates after three iterations differ by less than 0·001 from the estimates after con-
vergence, although the estimates are considerably different from the initial values. Similar
phenomena are observed in other settings. Thus, it suffices to use a small number of
iterations, three say, in practice.

Fig. 1: Simulation studies. Comparisons of different parameter estimates:
(a) Buckley–James-type estimates after convergence versus Buckley–James-
type estimates after three iterations; (b) Buckley–James-type estimates after

convergence versus the Gehan-type estimates.

6. E

We first present a reanalysis of the Stanford heart transplantation data (Miller &
Halpern, 1982). Following Miller & Halpern (1982), we consider two models, one
regressing the base-10 logarithm of the survival time on the patient’s age and T5 mismatch
core for the 157 patients with complete records on the T5 mismatch score, and one
regressing the base-10 logarithm of the survival time on age and age2 for the 152 patients
who survived for at least 10 days after transplantation. We use standard exponential
random variables in the resampling. The results of the analysis are shown in Table 2.
The estimates after three iterations are almost identical to the final estimates. The point
estimates under the proposed method are similar to those of Miller & Halpern (1982),
but the estimated standard errors are considerably larger. The simple variance estimator
used by Miller & Halpern is not compatible with the asymptotic variance formula given
in Ritov (1990) and Lai & Ying (1991). Indeed, none of the existing variance estimators
for the Buckley–James estimator has been shown to be consistent. Incidentally, the second
model fits the data well whereas the first one does not (Miller & Halpern, 1982; Wei
et al., 1990).
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Table 2. Accelerated failure time regression for the Stanford heart transplant data

Proposed estimator
Gehan estimator Three iterations At convergence

Covariate Est  Est  Est 

Model 1 Age −0·0211 0·0106 −0·0149 0·0098 −0·0148 0·0098
T5 −0·0265 0·1507 −0·0027 0·1477 −0·0028 0·1477

Model 2 Age 0·1046 0·0474 0·1070 0·0474 0·1070 0·0473
Age2 −0·0017 0·0006 −0·0017 0·0006 −0·0017 0·0006

Est, estimate of regression parameter; , standard error estimate based on 10 000 resamples.

As a second example, we consider the Mayo primary biliary cirrhosis data (Fleming &
Harrington, 1991, pp. 153–4). We regress the natural logarithm of the survival time on five
covariates for 418 patients. The estimates of the regression parameters at three iterations
are−0·0256, 1·6174,−0·5885,−0·8430 and−2·3331 for age, log(albumin), log(bilirubin),
oedema and log(protime), respectively. The corresponding standard error estimates
based on 10 000 resamples are 0·0063, 0·5409, 0·0752, 0·2604 and 0·8543. These results are
comparable to the Gehan and log-rank estimates of Jin et al. (2003).
Finally, we consider the litter-matched tumourigenesis data reported in Mantel et al.

(1977). There are 50 female litters, each with 3 rats. We regress the natural logarithm of
the time to tumour appearance on the treatment indicator, which takes values 0 and 1
for the treated and untreated rats, respectively. The point estimate at three iterations is
0·1565. With 10 000 resamples, the standard error is estimated at 0·1008. The corresponding
95% Wald confidence interval is (−0·0411, 0·3541). These results differ slightly from those
of Lee et al. (1993).

7. R

As a result of its direct physical interpretation, the accelerated failure time model pro-
vides an attractive alternative to the popular proportional hazards model (Cox, 1972) for
the regression analysis of censored data, especially when the response variable does not
pertain to a failure time. The least-squares estimation is a natural approach to the analysis
of this model, but is hindered by the presence of censoring. The inference procedures
developed in the present paper represent a practical way of implementing the least-squares
principle with censored data.
For uncensored data, the rank test with normal scores is as efficient as the t-test at the
normal distribution in the sense of Pitman efficiency and the asymptotic relative efficiency
is no less than 1 at any symmetric distribution, e.g. Hettmansperger (1991, pp. 110–2).
These asymptotic results may not apply to the estimation of regression parameters with
censored data in small samples. In our simulation studies, we have always found the
proposed estimator to be more efficient than the rank estimator with normal scores. It
would be worthwhile to conduct further investigations.
Jin et al. (2003) described inference procedures based on the rank estimators.

Computationally, it is less time-consuming to calculate the proposed estimator than
the rank estimators except for the Gehan estimator because the former involves linear
programming at the initial step only whereas the latter require linear programming at
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each step of the iteration. One could use a rank estimator other than the Gehan estimator
as the initial value in the proposed iterative scheme, although the computation would be
more intensive.
Lin & Wei (1992a, b) proposed inference procedures for the Buckley–James estimator

based on minimum-dispersion statistics (Wei et al., 1990). The implementation of these
statistics requires minimisation of discrete objective functions with possibly multiple
minima, for which no reliable algorithm is available. Furthermore, this approach does not
provide variance estimates.
In § 4, the correlation structure of multivariate failure times is taken into account in

the covariance estimation, but not in the construction of the estimators. One possible
approach to incorporating the correlation structure into the parameter estimation is to
mimic the weighted least-squares estimators for uncensored multivariate normal responses.
It would be worthwhile to investigate the efficiency gain of such procedures.
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A

Proofs of asymptotic results

We first consider univariate failure time data. LetF denote the s-field generated by the original
data (TB

i
, d
i
, X
i
) (i=1, . . . , n). Assume that the regularity conditions described in Lai & Ying (1991,

p. 1376) hold and that their tail modification is used in the construction of the estimating function.
Define

A=P2
−2
C{C2 (t)−C−10 (t)CE21 (t)} P2

t
{1−F(s)}dsD dl(t),

where

C
j
(t)= lim

n�2
n−1 ∑

n

i=1
(X
i
−X9 )Ej pr (Ci−X∞ib�t|Xi ) ( j=0, 1, 2).

Write U(b)=U(b, b). For m�1,

b@
(m)
=b@
(m−1)

+q ∑n
i=1
(X
i
−X9 )E2r−1U(b@ (m−1) ). (A1)

It follows from the arguments of Lai & Ying (1991) that, uniformly in db−b0d∏n−1/3,

U(b)=U(b
0
)−nA(b−b

0
)+o(n1/2+ndb−b

0
d) (A2)

almost surely. Thus,

b@
(m)
−b
0
= (I−D−1A)(b@

(m−1)
−b
0
)+n−1D−1U(b

0
)+o(n−1/2+db@

(m−1)
−b
0
d).

Since b@ (0)=b
@
G ,

b@
(1)
−b
0
= (I−D−1A)(b@G−b0 )+n−1D−1U(b0 )+o(n−1/2+db

@
G−b0d).
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By induction,

b@
(m)
−b
0
= (I−D−1A)m (b@G−b0 )+n−1{I− (I−D−1A)m}A−1U(b0 )

+oAn−1/2+ ∑
m−1

j=0
db@
(j)
−b
0
dB (m�1). (A3)

It follows from (A3) that b@
(m)
is consistent for every fixed m.

Note that

U(b
0
)= ∑
n

i=1
(X
i
−X9 )Cdiei (b0 )+ (1−di ) ∆2ei(b0) udFCb0 (u)1−FC

b
0

{e
i
(b
0
)}D

= ∑
n

i=1
(X
i
−X9 )Cdiei (b0 )+ (1−di ) ∆2ei(b0) udF(u)1−F{e

i
(b
0
)}D

+ ∑
n

i=1
(X
i
−X9 )(1−di )C ∆2ei(b0) udFCb0 (u)1−FC

b
0

{e
i
(b
0
)}
−
∆2
e
i
(b
0
)
udF(u)

1−F{e
i
(b
0
)}D .

Through integration by parts, we can establish the equality

d
i
e
i
(b
0
)+ (1−d

i
)
∆2
e
i
(b
0
)
udF(u)

1−F{e
i
(b
0
)}
=Ee

i
+P2
−2
qt−∆2t udF(u)1−F(t) r dMi (t), (A4)

where

M
i
(t)=d

i
I{e
i
(b
0
)∏t}−P t

0
I{e
i
(b
0
)�u}l(u)du.

In addition, it follows from the martingale representation of the Kaplan–Meier estimator (Fleming
& Harrington, 1991, p. 98) that, almost surely,

∆2
e
i
(b
0
)
udFC
b
0

(u)

1−FC
b
0

{e
i
(b
0
)}
−
∆2
e
i
(b
0
)
udF(u)

1−F{e
i
(b
0
)}
=n−1 ∑

n

j=1
P2
−2
j
i
(t)dM

j
(t)+o(n−1/2 )

for some random process j
i
(t). Thus,

U(b
0
)= ∑
n

i=1
P2
−2
C(Xi−X9 )qt−∆2t udF(u)1−F(t) r+j:x (t)D dMi (t)+o(n1/2 ), (A5)

where j:x (t) is the limit of n−1 Wn
i=1
(X
i
−X9 )(1−di )ji (t).

As shown by Jin et al. (2005),

b@G−b0= (nAG )−1 ∑
n

i=1
P2
−2
g
i
(t)dM

i
(t)+o(n−1/2+db@G−b0d), (A6)

where AG is a positive definite matrix and the gi (t) are nonrandom functions. We conclude from
(A3), (A5) and (A6) that, for each fixed m,

b@
(m)
−b
0
=n−1 ∑

n

i=1
P2
−2
A(I−D−1A)mA−1G gi (t)+{I− (I−D−1A)m}A−1
×C(Xi−X9 )qt−∆2t udF(u)1−F(t) r+j:x (t)DB dMi (t)

+oAn−1/2+ ∑
m−1

j=0
db@
(j)
−b
0
dB (A7)

almost surely. Thus, b@
(m)
is asymptotically normal as n�2.
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Our next task is to show that the conditional distribution of n1/2 (b@*
(m)
−b@
(m)
) given F converges

almost surely to the limiting distribution of n1/2 (b@
(m)
−b0 ). For m�1,

b@*
(m)
=b@*
(m−1)

+q ∑n
i=1
Z
i
(X
i
−X9 )E2r−1U*(b@*(m−1) ), (A8)

where

U*(b)= ∑
n

i=1
Z
i
(X
i
−X9 ){YC *i (b)−Y9 *(b)− (Xi−X9 )∞b}.

It follows from (A8) that b@*
(m)
is consistent for every m. By incorporating the random weights Z

i
into the derivation of the asymptotic linearity in Lai & Ying (1991), we can establish the following
linear approximation analogous to (A2):

U*(b@*
(m)
)=U*(b@

(m)
)−nA(b@*

(m)
−b@
(m)
)+o(n1/2+ndb@*

(m)
−b
0
d+ndb@

(m)
−b
0
d) (A9)

almost surely. Note that the slope matrix A remains the same as in (A2), since EZ
i
=1 and A is

the limit of the gradient of n−1EU*(b) at b=b0 . Clearly,

U*(b@
(m)
)−U(b@

(m)
)= ∑
n

i=1
(Z
i
−1)(X

i
−X9 ){YC *i (b

@
(m)
)−Y9 *(b@ (m) )− (Xi−X9 )∞b

@
(m)
}

+ ∑
n

i=1
(X
i
−X9 ){YC *i (b

@
(m)
)−X∞

i
b@
(m)
}−U(b@

(m)
). (A10)

Since E(Z
i
−1|F)=0 and YC *

i
(b@
(m)
)−X∞

i
b@
(m)
can be approximated by the left-hand side of (A4),

we have

∑
n

i=1
(Z
i
−1)(X

i
−X9 ){YC *i (b

@
(m)
)−Y9 *(b@ (m) )− (Xi−X9 )∞b

@
(m)
}

= ∑
n

i=1
(Z
i
−1) P2

−2
(X
i
−X9 )qt−∆2t udF(u)1−F(t) r dMi (t)+o(n1/2 ). (A11)

By approximating FC *
b@
(m)

−FC
b@
(m)

with a weighted sum of Z
i
−1, we can show that

∑
n

i=1
(X
i
−X9 ){YC *i (b

@
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i
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(m)
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)
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{e
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(b@
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−
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e
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(u)

1−FC
b@
(m)

{e
i
(b@
(m)
)}D

= ∑
n

i=1
(Z
i
−1) P2

−2
j:x (t)dM

i
(t)+o(n1/2 ). (A12)

By plugging (A11) and (A12) into the right-hand side of (A10) and then plugging the resulting
expression into (A9), we obtain

U*(b@*
(m)
)=U(b@

(m)
)+ ∑
n

i=1
(Z
i
−1) P2

−2
C(Xi−X9 )qt−∆2t udF(u)1−F(t) r+j:x (t)D dMi (t)

−nA(b@*
(m)
−b@
(m)
)+o(n1/2+ndb@*

(m)
−b
0
d+ndb@

(m)
−b
0
d). (A13)
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Taking the difference of (A1) and (A8) and making use of (A13) for U*(b@*
(m−1)

), we can show that

b@*
(m)
−b@
(m)
=n−1D−1 ∑

n

i=1
(Z
i
−1) P2

−2
C(Xi−X9 )qt−∆2t udF(u)1−F(t) r+j:x (t)D dMi (t)
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By induction,
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(j)
−b
0
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As shown by Jin et al. (2005),

b@*G−b
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G= (nAG )−1 ∑
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Thus,

b@*
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−b@
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A(I−D−1A)mA−1G gi (t)+{I− (I−D−1A)m}A−1
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db@*
(j)
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0
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db@
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−b
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Comparing (A14) with (A7), we see that the conditional distribution of n1/2 (b@*
(m)
−b@
(m)
) given F

converges almost surely to the limiting distribution of n1/2 (b@
(m)
−b0 ).

For multiple events data, equations of the forms of (A7) and (A14) hold for each of the K
types of failure. It then follows from the multivariate central limit theorem that n1/2 (BC

(m)
−B)

is asymptotically zero-mean normal and that the conditional distribution of n1/2 (BC *
(m)
−BC
(m)
) given

the data (TB
ki
, d
ki
, X
ki
) (k=1, . . . , K; i=1, . . . , n) converges almost surely to the limiting distribution

of n1/2 (BC
(m)
−B). For clustered failure time data, the proofs are essentially the same as those of

univariate failure time data except that we need to use the properties of the Kaplan–Meier estimator
for dependent observations (Ying & Wei, 1994) and to replace the martingale central limit theorem
by the central limit theorem for empirical processes. The details are omitted.
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