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S

The case-cohort design is a common means of reducing cost in large epidemiological
cohort studies. Under this design, covariates are measured only on the cases and a sub-
cohort randomly selected from the entire cohort. In this paper, we demonstrate how to
use the case-cohort data to estimate the regression parameter of the additive hazards
model, which specifies that the conditional hazard function given a set of covariates is the
sum of an arbitrary baseline hazard function and a regression function of the covariates.
The proposed estimator is shown to be consistent and asymptotically normal with an
easily estimated variance. The subcohort may be selected by independent Bernoulli sam-
pling with arbitrary selection probabilities or by stratified simple random sampling. The
efficiencies of various sampling schemes are investigated both analytically and by simu-
lation. A real example is provided.

Some key words: Censoring; Proportional hazards; Pseudo-score; Risk difference; Stratified sampling;
Survival data.

1. I

Cohort studies and prevention trials typically involve the follow-up of several thousand
subjects for many years. The assembly of covariate histories can be prohibitively expensive
if it is done on all cohort members. Under the case-cohort design (Prentice, 1986), covariate
histories are ascertained only for the cases, i.e. those who experience the disease of interest
during the follow-up period, and for a small subcohort, which is a random sample from
the entire cohort. The reduction of cost offered by this design has enabled researchers to
conduct studies that otherwise would have been infeasible.

Prentice (1986) and Self & Prentice (1988) discussed how to use case-cohort data to
estimate the relative risk of the proportional hazards model. Their estimators were
obtained by approximating the risk sets of the entire cohort involved in the partial likeli-
hood function with their subcohort counterparts. They demonstrated that the efficiency
losses of the resulting estimators relative to the maximum partial likelihood estimator
based on full covariate data are minimal, particularly for large cohorts with infrequent
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disease occurrence. Kalbfleisch & Lawless (1988), among others, have suggested that the
subcohort may be selected from the entire cohort with unequal probabilities and also that
the efficiency of the estimation may be improved by including all the cases in the approxi-
mate risk sets even if they do not belong to the subcohort. The properties of these modified
designs and estimators have not yet been studied.

All the aforementioned work deals with the proportional hazards regression, which
pertains to the relative risk of the exposure. Epidemiologists are also interested in the risk
difference attributed to the exposure. The risk difference is more relevant to public health
because it translates directly into the number of disease cases that would be avoided by
eliminating a particular exposure. The analogue of the proportional hazards model for
the risk difference regression is the additive hazards model, which specifies that the hazard
function associated with a set of possibly time-dependent covariates Z(.) is given by

l(t |Z)=l0(t)+bT
0
Z(t), (1)

where l0 is an unspecified baseline hazard function and b0 is a vector-valued regression
parameter (Cox & Oakes, 1984, p. 74; Breslow & Day, 1987, p. 182).

Lin & Ying (1994) proposed an estimator for b0 of model (1). Their estimator, however,
requires that the covariate data be fully observed. Furthermore, their estimator differs
from the maximum partial likelihood estimator of the proportional hazards model in how
the covariates of the controls, i.e. disease-free subjects, enter into the estimating function.
Therefore, it is not obvious how to estimate b0 of model (1) based on case-cohort data
or whether or not the resulting estimator will have relative efficiency similar to that of
the Prentice and Self–Prentice estimators.

This paper provides the answers to the above two questions. Specifically, we discuss in
§§ 2 and 3 how to construct appropriate estimators for model (1) when the subcohort is
selected by independent Bernoulli sampling with arbitrary selection probabilities or by
stratified simple random sampling with fixed sample size. In both settings, the proposed
estimators are proven to be consistent and asymptotically normal with easily estimated
limiting covariance matrices. In § 4, the asymptotic relative efficiency of the proposed
estimator is calculated under various sampling schemes and is compared with that of the
Prentice and Self–Prentice estimators. In § 5, the results of a simulation study are reported.
A real example is given in § 6.

2. C-   B 

2·1. Estimation of b0
Let T be the failure time, C be the censoring time and Z(t) (0∏t∏t) be a vector of

covariate processes, where t<2 denotes the time when the follow-up ends. Write X=
min (T , C) and d=I(T∏C), where I(A) is the indicator function of event A. Suppose
that the cohort consists of n independent subjects such that {T

i
, C

i
, Z

i
( . )} (i=1, . . . , n)

are n independent copies of {T , C, Z(. )}.
If covariates were measured on the entire cohort, the data would be

{X
i
, d
i
, Z

i
( t), 0∏t∏X

i
} (i=1, . . . , n).

Under the case-cohort design, however, covariates are available only on the cases, i.e.
those with d

i
=1, and on a random subset of the entire cohort, i.e. the subcohort; the two

sets may overlap. Let j
i
indicate, by the values 1 versus 0, whether or not the ith subject

in the original cohort is selected into the subcohort. In this section, the j
i
’s are independent
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Bernoulli variables with possibly unequal success probabilities. We allow j
i
to depend on

individual characteristics V
i
, which may involve X

i
, Z

i
( . ) and some external variables

correlated with X
i
and Z

i
( . ). Let p

i
=pr (j

i
=1)=p(V

i
), where p(V

i
) is a function mapping

the sample space of V to ( p0 , 1) for some p0>0. The size of the subcohort nA)W j
i
is

random. However, if n−1W p
i
converges to aµ(0, 1] in probability, then nA/n also converges

to a in probability and a is the limiting subcohort proportion. The observable data for
the ith subject is {X

i
, d
i
, V

i
, j
i
, Z

i
(t), 0∏t∏X

i
} if j

i
=1 or d

i
=1, and is (d

i
, V

i
, j
i
) if j

i
=

d
i
=0.
We adopt the standard counting-process notation: N

i
(t)=I(T

i
∏t, d

i
=1) and Y

i
(t)=

I(X
i
�t). If the data were completely observed, then b0 of model (1) could be estim-

ated by b@
A
, the root of the pseudo-score function

U
A
(b)= ∑

n

i=1
P t
0

{Z
i
(t)−Z9 ( t)}{dN

i
( t)−bTZ

i
(t)Y

i
(t) dt},

where

Z9 (t)= ∑
n

i=1
Z
i
(t)Y

i
(t)N ∑n

i=1
Y
i
(t)

(Lin & Ying, 1994). A fundamental difference between U
A

and the partial likelihood score
function of the proportional hazards model is that the former includes one term for each
subject no matter if he/she is a case or not, whereas the latter includes the cases only.
Thus, an approach different from that of Prentice (1986) and Self & Prentice (1988) is
required to adapt U

A
to the case-cohort design.

To obtain a pseudo-score for fitting model (1) to case-cohort data, we define the
weighted availability indicators r

i
=d

i
+ (1−d

i
)j
i
/p
i
(i=1, . . . , n). Note that r

i
weights

the ith subject by the inverse probability of selection, which is set to 1 for all the cases,
and that E(r

i
|d
i
, V

i
)=1. Mimicking the Horvitz & Thompson (1951) idea, we propose

to modify U
A

as

U
H
(b)) ∑

n

i=1
r
i P t

0
{Z

i
(t)−Z9 H (t)}{dN

i
(t)−bTZ

i
( t)Y

i
(t) dt}, (2)

where

Z9 H (t)= ∑
n

i=1
r
i
Z
i
(t)Y

i
(t)N ∑n

i=1
r
i
Y
i
(t).

The resulting estimator possesses a closed form:

b@
H
=C ∑n

i=1
r
i P t

0
{Z

i
(t)−Z9 H( t)}E2Y

i
(t) dtD−1 ∑n

i=1
P t
0

{Z
i
(t)−Z9 H (t)} dN

i
(t), (3)

where aE2=aaT.
As compared with the Prentice and Self–Prentice pseudo-scores for proportional haz-

ards regression, U
H

is based on a much smaller number of terms than the original pseudo-
score U

A
and thus may incur greater efficiency loss. Unlike its counterpart in the Prentice

and Self–Prentice pseudo-scores, Z9 H includes not only the subcohort members but also
all the cases not belonging to the subcohort. This approach shares the same spirit as that
of Kalbfleisch & Lawless (1988).
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2·2. Asymptotic distribution of b@
H

Define

L0 (t)= P t
0

l0 (s) ds,

M
i
( t)=N

i
(t)− P t

0
Y
i
(s) dL0 (s)− P t

0
bT
0
Z
i
(s)Y

i
(s) ds.

Simple algebraic manipulation yields

U
H
(b0 )= ∑

n

i=1
r
i P t

0
{Z

i
(t)−Z9 H (t)} dM

i
( t). (4)

Although U
H
(b0 ) is the sum of stochastic integrals with respect to martingales, the familiar

martingale central limit theorem (Andersen & Gill, 1982) cannot be applied to U
H
(b0 )

because the r
i
’s depend on the d

i
’s and are therefore not predictable. We show in

Appendix 1 that

n−DU
H
(b0 )=n−D ∑

n

i=1
r
i
S
i
(b0 )+o

p
(1),

where

S
i
(b0)= P t

0
{Z

i
( t)−e(t)} dM

i
(t),

and e(t)=E{Z1 (t)Y1( t)}/E{Y1(t)}. The proof involves techniques not previously used in
the literature of case-cohort designs.

Since 1−r
i
= (1−d

i
) (1−j

i
/p
i
), we have

n−DU
H
(b0 )=n−D ∑

n

i=1
S
i
(b0 )−n−D ∑

n

i=1
(1−d

i
)(1−j

i
/p
i
)S
i
(b0 )+o

p
(1). (5)

The two terms on the right-hand side of (5) are both sums of n independent zero-mean
random vectors. The first term is asymptotically equivalent to the full-cohort pseudo-
score n−DU

A
(b0 ), which converges in distribution to a zero-mean normal random vector

with covariance matrix

S
A
(b0)=E CP t

0
{Z1 (t)−e(t)}E2 dN1(t)D .

The second term has zero mean conditional on {X
i
, d
i
, Z

i
( . ), V

i
} (i=1, . . . , n) and con-

verges in distribution to a zero-mean normal random vector with covariance matrix

S
H
(b0 )=E{(1−p1)p−11 (1−d

1
)SE2
1

(b0)}.

The two terms are clearly uncorrelated. Thus, n−DU
H
(b0) converges in distribution to a

zero-mean normal random vector with covariance matrix S
A
(b0)+S

H
(b0). Loosely speak-

ing, the case-cohort design adds some extra variability S
H

to the full-cohort pseudo-score
covariance matrix S

A
. Self & Prentice (1988) observed a similar phenomenon for pro-

portional hazards regression.
By Taylor series expansion, nD(b@

H
−b0) converges in distribution to a zero-mean normal
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random vector with covariance matrix D−1
A

(S
A
+S

H
)D−1

A
, where

D
A
=E CP t

0
{Z1( t)−e(t)}E2Y1( t) dtD ,

which is the probability limit of −n−1 ∂U
H
(b0)/∂b. Since the pseudo-score is linear in b,

the consistency of b@
H

follows from the asymptotic normality.

2·3. Estimation of L0( .) and variance estimation for b@
H

A natural estimator for the cumulative baseline hazard L0(t) is

LC
H
(t)) P t

0

Wn
i=1

dN
i
(s)

Wn
j=1

r
j
Y
j
(s)
− P t

0
b@T
H
Z9 H (s) ds,

which is a simple modification of the estimator proposed by Lin & Ying (1994). It is
shown in Appendix 2 that nD{LC

H
(t)−L0(t)} converges weakly on [0, t] to a zero-mean

Gaussian process whose covariance function at (s, t) is

hT(s)D−1
A

(S
A
+S

H
)D−1

A
h(t)+R1(s, t)−hT(s)D−1

A
R2 (t)−hT(t)D−1

A
R2(s),

where

h(t)= P t
0

e(u) du,

R1 (s, t)=E C{d1+ (1−d1 )/p1} P s
0

p−1
0

(u) dM
1
(u) P t

0
p−1
0

(v) dM1 (v)D ,
R2 (t)=E CP t

0
{Z1 (u)−e(u)}p−1

0
(u) dN1 (u)D ,

and p0 (t)=pr (X1�t).
The full-cohort covariance matrix S

A
(b0) can be consistently estimated by

SC
A
)n−1 ∑

n

i=1
P t
0

{Z
i
(t)−Z9 H (t)}E2 dN

i
(t). (6)

A consistent estimator for D
A

is

DC
A
)n−1 ∑

n

i=1
r
i P t

0
{Z

i
(t)−Z9 H (t)}E2Y

i
(t) dt. (7)

The consistency of SC
A

and DC
A

follows from the law of large numbers, together with the
uniform convergence of Z9 H( t) to e(t) established in Appendix 1.

To estimate the extra pseudo-score covariance S
H
, we define

SC
H
(b@
H
)=n−1 ∑

n

i=1

1−p
i

p2
i

j
i
(1−d

i
)SCE2
i

(b@
H
),

where

SC
i
(b@
H
)= P t

0
{Z

i
(t)−Z9 H (t)}{dN

i
(t)−Y

i
(t) dLC

H
(t)−b@T

H
Z
i
( t)Y

i
(t) dt},
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which is obtained from S
i
(b0 ) by replacing all the unknown parameters with their respect-

ive sample estimators. Note that SC
H
(b@
H
) involves only those SC

i
’s associated with the

controls, i.e. zero d
i
’s. When d

i
=0,

SC
i
(b@
H
)=− P t

0
{Z

i
(t)−Z9 H (t)}

Y
i
( t)

Wn
j=1

r
j
Y
j
(t) q ∑n

k=1
dN

k
(t)r

− P t
0

{Z
i
(t)−Z9 H (t)}E2b@

H
Y
i
(t) dt.

The proof of the consistency of SC
H
(b@
H
) is technical, but follows from the uniform conver-

gence of Z9 H( t) and LC
H
( t) and the repeated use of integration by parts.

3. C-     

The sampling scheme considered in the previous section is very flexible. If the selection
probabilities are equal for all subjects or for subjects within the same stratum, however,
efficiency can be improved by using simple random sampling with fixed sample size. Thus,
we consider in this section possibly stratified simple random sampling for the case-
cohort design.

Suppose that the cohort is divided into K�1 strata of sizes n1 , . . . , nK according to
certain criteria, where n1+ . . .+n

K
=n. Let 1∏i∏n

k
index the subjects within the kth

stratum. From the n
k
subjects in the kth stratum, we select at random nAk subjects into the

subcohort. The total subcohort size is nA)nA1+ . . .+nAK . Denote by p
k
)nAk/nk the pro-

portion sampled from the kth stratum and assume that p
k

converges to a
k
µ(0, 1] as

n�2. Write q
k

for the limit of n
k
/n. The total subcohort proportion nA/n then converges

to a)W q
k
a
k
.

Let j
ki

indicate whether or not the ith subject of the kth stratum is selected into the
subcohort. Unlike in the case of Bernoulli sampling j

k1
, . . . , j

kn
k

are correlated because
of the fixed sample size nAk . Define r

ki
=d

ki
+ (1−d

ki
)j
ki
/p
k
. A natural analogue of pseudo-

score (2) is

U
H
(b)) ∑

K

k=1
∑
n
k

i=1
r
ki P t

0
{Z

ki
(t)−Z9 H (t)}{dN

ki
(t)−bTZ

ki
(t)Y

ki
(t) dt}. (8)

The resulting estimator takes a similar form to (3).
To establish the asymptotic distribution of (8), we use an approximation similar to (5).

Specifically,

n−DU
H
(b0 )=n−D ∑

K

k=1
∑
n
k

j=1
S
kj

(b0 )−n−D ∑
K

k=1
∑
n
k

j=1
(1−d

kj
) A1− j

kj
p
k
B Skj(b0 )+o

P
(1), (9)

where

S
ki
(b0)= P t

0
{Z

ki
(t)−e(t)} dM

ki
(t).

The proof of (9) is even more delicate than that of (5) because of the dependence among
the j

kj
( j=1, . . . , n

k
), but is given in Appendix 1.

The first term on the right-hand side of (9) is identical to that of (5). By a slight extension
of Hájek’s (1960) central limit theorem for simple random sampling, the second term
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converges in distribution to a zero-mean normal random vector with covariance matrix

S*
H
(b0)= ∑

K

k=1
q
k
1−a

k
a
k

S*
k
(b0 ),

where

S*
k
(b0 )=E

k
{(1−d

ki
)SE2
ki

(b0 )}−[E
k
{(1−d

ki
)S
ki
(b0)}]E2,

and E
k

denotes expectation taken over the kth stratum. Therefore, n−DU
H
(b0) is asymp-

totically zero-mean normal with covariance matrix S
A
(b0 )+S*

H
(b0 ) and conse-

quently n−D(b@
H
−b0 ) is asymptotically zero-mean normal with covariance matrix

D−1
A

(S
A
+S*

H
)D−1

A
. Since in general E

k
{(1−d

ki
)S
ki
(b0)}N0, the extra covariance S*

H
(b0)

under stratified simple random sampling is never larger than the extra covariance S
H
(b0 )

under stratified Bernoulli sampling. This holds for all K�1.
It is natural to estimate S*

k
(b0 ) by

SC *
k
(b@
H
)=(n

k
p
k
)−1 ∑

n
k

i=1
j
ki
(1−d

ki
)SCE2
ki

(b@
H
)−q(nkpk)−1 ∑nk

i=1
j
ki
(1−d

ki
)SC
ki
(b@
H
)rE2,

where

SC
ki
(b@
H
)=− P t

0
{Z

ki
( t)−Z9 H (t)}

Y
ki
(t)

W

l,m
Y
lm

(t)
d ∑
l,m

N
lm

(t)

− P t
0

{Z
ki
( t)−Z9 H (t)}E2Y

ki
( t)b@

H
dt.

Thus, the limiting covariance matrix of n−D(b@
H
−b0 ) can be estimated by

DC−1
A

(SC
A
+SC *

H
)DC−1

A
, where

SC *
H
(b@
H
)= ∑

K

k=1

n
k
(1−p

k
)

np
k

SC *
k
(b@
H
),

and SC
A

and DC
A

are obvious modifications of (6) and (7), respectively.

4. A  

The goal of this section is to address three related issues. First, what is the efficiency loss
of the case-cohort estimator b@

H
relative to the full-data estimator b@

A
and how does it compare

to the efficiency loss of the Self–Prentice estimator? Secondly, what is the efficiency gain of
stratified simple random sampling over stratified Bernoulli sampling? Finally, by how much
can the efficiency be improved by stratifying on a surrogate exposure?

Let Z be a binary time-independent exposure with pr(Z=1)=p
Z
. We consider stratified

subcohort sampling from two strata defined by a dichotomous surrogate exposure V. Write

g=pr (V=1 |Z=1), n=pr (V=0 |Z=0), p
V
)pr (V=1)=(1−n)(1−p

Z
)+gp

Z
,

where g is the sensitivity and n is the specificity of the surrogate for the true exposure.
Assume that V is independent of all other variables given Z. The goal of the stratification
is to achieve a more balanced subcohort with respect to Z by using the information on V.

How can this be done? For stratified simple random sampling, we just select nA0=[na/2]
subjects from each stratum. Denote the resulting extra pseudo-score variance by S

HS
. To
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conduct stratified Bernoulli sampling, set p(V )=a/(2p
V
) for V=1 and p(V )=a/(2−2p

V
)

for V=0. The extra pseudo-score variance is denoted by S
HB

. Note that an unstratified
sample with equal probabilities can be obtained as a special case if we set g=n=1

2
.

In Appendix 3, we present formulae for S
A
, S

HS
and S

HB
assuming that all the censoring

occurs at t=1. As shown in § 3, S
HS

is never smaller than S
HB

. It follows from Appendix 3
that, in the current setting, S

HS
=S

HB
if and only if both b0=0 and g+n=1. This implies

that stratified random sampling yields more efficient estimators whenever b0N0 or V is
correlated with Z.

We used the formulae given in Appendix 3 to evaluate the asymptotic relative efficiencies
of various pairs of estimators in the special case of constant baseline hazard. Since the
proportional hazards model also holds, we evaluated the efficiency of the Self–Prentice
estimator as well; the Prentice estimator is asymptotically equivalent to the Self–Prentice
estimator. This calculation was based on equations (5·7)–(5·9) from Self & Prentice (1988).
The results are shown in Table 1. Note that, for b

0
=0, the results apply to any baseline

hazard function because the asymptotic variances then depend only on L0(1).
Table 1(a) compares the efficiencies of unstratified b@

H
under Bernoulli sampling and

Table 1. Asymptotic relative eYciencies under unstratified and
stratified designs

(a) Unstratified versus full, p
Z
=0·3

Rel. 1 2 3 Rel. 1 2 3
C/C risk Bern. s.r.s. – C/C risk Bern. s.r.s. –

E(d1 )=0·01 E(d1 )=0·10
1 1 0·503 0·503 0·502 1 1 0·527 0·527 0·518

3 0·371 0·402 0·461 3 0·398 0·423 0·472

2 1 0·671 0·671 0·670 2 1 0·714 0·714 0·707
3 0·543 0·576 0·634 3 0·598 0·623 0·668

4 1 0·806 0·806 0·806 4 1 0·870 0·870 0·866

3 0·708 0·735 0·779 3 0·799 0·815 0·843

(b) Stratified versus unstratified, E(d
i
)=0·01

Rel. 4 5 Rel. 4 5
C/C risk g=n Bern. s.r.s. C/C risk g=n Bern. s.r.s.

p
Z
=0·1 p

Z
=0·3

1 1 0·7 1·054 1·087 1 1 0·7 1·013 1·086

0·9 1·259 1·467 0·9 1·054 1·462

3 0·7 1·098 1·126 3 0·7 1·038 1·104
0·9 1·553 1·803 0·9 1·174 1·608

2 1 0·7 1·036 1·056 2 1 0·7 1·009 1·055
0·9 1·159 1·268 0·9 1·036 1·264

3 0·7 1·074 1·094 3 0·7 1·028 1·072
0·9 1·383 1·519 0·9 1·122 1·367

1 and 2 are the asymptotic efficiencies of b@
H

relative to the full-data
estimator under Bernoulli sampling and simple random sampling, respectively;

3 is the asymptotic efficiency of the Self–Prentice estimator relative to the
full-data estimator; 4 and 5 are the asymptotic relative efficiencies of
stratified versus unstratified designs with Bernoulli sampling and simple random

sampling, respectively. C/C, number of controls per case.
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simple random sampling with the Self–Prentice estimator, which has the same asymptotic
variance under both types of sampling. As indicated above, simple random sampling is
more efficient than Bernoulli sampling if the exposure affects the failure time. Both esti-
mators are as efficient as the Self–Prentice estimator under the null; the small discrepancy
is caused by the exclusion of the cases not belonging to the subcohort from the approximate
risk sets by the Self–Prentice estimator. As suspected, the Self–Prentice estimator becomes
more efficient as the exposure effect increases, but the difference is not very large even
with the relative risk of 3.

Table 1(b) also evaluates the effect of stratification. With either Bernoulli or simple
random sampling, the efficiency gain due to stratification is substantial when the surrogate
is good, the exposure is rare and its effect is large. However, with Bernoulli sampling the
gain tapers off much faster as the exposure gets more common.

5. S 

To investigate the behaviour of the proposed estimators for sample sizes commonly
encountered in practice, we conducted a Monte Carlo experiment. The set-up and notation
are the same as in § 4 unless otherwise indicated. We generated samples of 5000 subjects
with failure times satisfying the model l(t |Z)=0·5+b0Z, where Z is binary with p

Z
=

0·1 or 0·5. Unlike in § 4, the censoring was uniform over a certain time interval. The
proportion of cases was close to 0·1 and the subcohort proportion was 0·1. The subcohort
was selected by simple random sampling, with or without stratification. In each case, 1000
simulation samples were generated.

Table 2 displays the Monte Carlo estimates for the sampling means and sampling stan-
dard errors of the estimators, for the sampling means of the standard error estimators,
for the coverage percentages of 95% confidence intervals and for the relative efficiencies.
The results for efficiencies confirm the conclusion reached in § 4: stratification always pays
off, especially when the surrogate is precise. The sampling standard errors of the parameter
estimates are close to the average standard error estimates and the corresponding 95%

Table 2. Simulation results for simple random sampling of the subcohort under model
l(t |Z)=0·5+b0Z

p
Z
=0·1 p

Z
=0·5

Mean  Mean Cover. Mean  Mean Cover.

Est. of est. of est.  (%)  of est. of est.  (%) 

b0=0

 0·002 0·078 0·076 94·4 1·00 −0·001 0·046 0·045 95·6 1·00
 0·014 0·112 0·117 96·8 0·42 0·002 0·068 0·067 95·2 0·45
1 0·011 0·113 0·110 93·9 0·47 0·002 0·064 0·065 96·2 0·48

2 0·005 0·095 0·092 93·5 0·67 0·002 0·058 0·059 95·3 0·59

b0=0·5
 0·500 0·117 0·111 93·8 1·00 0·498 0·068 0·068 94·9 1·00
 0·531 0·201 0·201 95·6 0·31 0·508 0·106 0·102 94·9 0·44

1 0·513 0·186 0·184 93·4 0·37 0·504 0·100 0·099 94·1 0·47
2 0·504 0·152 0·146 93·3 0·58 0·504 0·089 0·090 95·5 0·57

Four estimators are computed: , full-data; , unstratified case-cohort; 1 , stratified with g=n=0·7;
2 , stratified with g=n=0·9. , estimated standard error of the estimate. Cover., coverage of the

approximate 95% confidence interval. , estimated efficiency relative to .
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confidence intervals have reasonable coverage rates. These results imply that the asymp-
totic approximations given in §§ 2 and 3 are adequate for sample size of 5000 with 500
cases. Another simulation study suggested that the asymptotic variance formulae can be
used with as few as 50 cases.

The relative efficiencies given in the last column of Table 2 show that with simple
random sampling a stratified estimator may be more efficient even when the whole cohort
is balanced in the exposure. For example, with a=0·1 and b0=0, the efficiency of the
unstratified estimator  is 0·45, while the two stratified estimators 1 and 2 have
efficiencies 0·48 and 0·59, respectively. If the subcohort had been selected by Bernoulli
sampling, all the estimators would have had efficiency 0·45.

6. A  

To illustrate the use of the stratified case-cohort design for the additive hazards
regression, we now present an analysis of two related epidemiological studies, NWTSG-3
(D’Angio et al., 1989) and NWTSG-4 (Green et al., 1998). These studies were conducted
by the National Wilms Tumor Study Group to study Wilms tumour, a rare renal cancer
occurring in children. The most important prognostic factors for death in Wilms tumour
patients are histological type and stage. Stage I–IV measures the tumour spread; histologi-
cal type can be classified as favourable, , or unfavourable, . In the studies, two
assessments of histological type were available, local, made in the hospital where a patient
was treated, and central, made by an experienced pathologist. The local  can be regarded
as a surrogate for the true exposure, the central . The full cohort consisted of 4335
patients, 427 of whom had died as of the date of data listing. The median follow-up time
was 5·6 years. Central  was detected in 11·4% of the subjects. The sensitivity of local
 for central  was 0·72 and the specificity was 0·98.

We considered a model that included five binary indicators as covariates: central ,
Stages II–IV and NWTSG-4. The last covariate was included because patients in
NWTSG-4 received a better treatment compared to NWTSG-3. In the dataset, all these
covariates were measured. Thus, we started by fitting the additive hazards model to the
whole cohort. To emulate the case-cohort design, we drew 1000 random subcohorts from
the cohort, consisting of 10% or 20% of the total sample. We did this in two ways,
unstratified simple random sampling and stratified simple random sampling with strata
defined by local histology status, that is favourable, unfavourable or unknown. We drew
the same number of subjects from  and  and 10% or 20% of subjects with unknown
histology. By stratification, we hoped to gain efficiency by obtaining a subcohort more
balanced in central histology status.

Table 3 summarises the results. The first row gives the full-data estimates of the five
parameters and their estimated standard errors. All are highly significant. The estimate
for central  was 0·0667, which means that patients with  had on average 6·7 more
deaths per 100 person-years of follow-up. The following lines show the averages of the
case-cohort estimates over the 1000 simulated subcohorts and their averaged estimated
standard errors. All the averaged case-cohort estimates are close to the full-data estimates.
Their standard errors decrease as the subcohort size increases. When stratified sampling
is used, the standard errors for central  markedly decrease and get closer to the full-
data standard error. Stratification has little or no effect on the standard errors of the other
parameter estimates.
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Table 3. Results of the additive hazards regression for the
NWT SG studies

Parameter estimates
Estimate  (central ) Stage II Stage III Stage IV NWTSG-4

Full-data 0·0667 0·00666 0·0152 0·0373 −0·00563

(0·00571) (0·00154) (0·00196) (0·00386) (0·00195)

Subcohort proportion a=0·1

Unstrat. 0·0695 0·00683 0·0154 0·0384 −0·00589
(0·01483) (0·00329) (0·00387) (0·00827) (0·00359)

Stratif. 0·0680 0·00681 0·0156 0·0391 −0·00587

(0·01084) (0·00293) (0·00354) (0·00960) (0·00362)

Subcohort proportion a=0·2
Unstrat. 0·0679 0·00679 0·0155 0·0378 −0·00584

(0·01046) (0·00248) (0·00296) (0·00610) (0·00278)

Stratif. 0·0673 0·00674 0·0155 0·0383 −0·00587
(0·00843) (0·00224) (0·00275) (0·00690) (0·00282)

Standard error estimates for the full-data estimates are shown in parentheses.
Case-cohort estimates were averaged over 1000 simulated subcohorts, with
the averaged standard error estimates shown in parentheses.

7. D

The proposed additive hazards regression for case-cohort studies allows the subcohort
to be selected by Bernoulli sampling with arbitrary selection probabilities or by possibly
stratified simple random sampling. For stratified design, simple random sampling is more
efficient than Bernoulli sampling. Bernoulli sampling, however, allows more general
designs. This may be desirable if, for example, the subcohort is selected ad hoc and the
implicit sampling probabilities are ascertained retrospectively.

The results in §§ 4–6 show that efficiency may be improved substantially by stratifying
on a surrogate exposure. The variance formulae given in Appendix 3 enable one to deter-
mine the sample size required for stratified case-cohort designs.

The proposed approach makes full use of covariate information from both the cases
and controls. In particular, the covariates from all the cases are included in Z9 H regardless
of whether or not they belong to the subcohort. This is in the same vein as the Kalbfleisch–
Lawless estimator for proportional hazards regression. There is no sensible analogue of
Prentice’s original estimator for additive hazards regression because both cases and con-
trols contribute to the outside sum of the pseudo-score and they must be weighted by the
same weights as in Z9 H . The inclusion of all cases’ covariates in Z9 H and in its counterpart
of the Kalbfleisch–Lawless estimator makes the theoretical development more difficult
because such terms are not predictable. The techniques developed in Appendix 1 do not
require predictability and can also be used to establish the asymptotic properties of the
Kalbfleisch–Lawless estimator.

The definition of Y
i
( . ) given in § 2 pertains to right-censored data. In many epidemiologi-

cal cohort studies, the failure time may be subject to both left-truncation and right-
censoring. To accommodate left-truncation, we redefine Y

i
(t) as I(X

i
�t, L

i
<t), where L

i
is the time of left-truncation for the ith subject. It can be shown through slight refinements
of the arguments of Appendix 1 that all the results in this paper hold for arbitrary Y

i
( . ).

A weighted pseudolikelihood for estimating the parameters of the proportional hazards
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model in nested case-control studies was proposed by Samuelsen (1997). His approach
could be combined with our methods to yield a nested case-control estimator for the
additive hazards model. However, he did not prove asymptotic normality of the estimator
and the methods given in our Appendix 1 would not suffice for a complete proof because
of the complex dependence of the sampling indicators.

Recently, Borgan et al. (2000) proposed several weighted pseudo-scores for estimating
the Cox model parameters in stratified case-cohort studies and discussed optimal selection
of subcohort sampling probabilities. Their Estimator II shares a similar spirit to our
estimator based on (8). They only gave a hint of the asymptotic properties of Estimator II,
which can potentially be studied by the techniques given in our Appendix 1.
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A 1
Asymptotic approximation for the pseudo-score

We assume that regularity conditions similar to those of Andersen & Gill (1982, Theorem 4.1)
hold. In particular, L0 (t)<2, pr{Y1 (t)=1}>0,

E(sup[ |Y1 (t)Z1 (t)E2{bT
0
Z
1
(t)}2 |; 0∏t∏t])<2,

and S
A
(b0 ) is positive definite. Then n−1Wr

i
Z
i
(t)Y

i
( t)�p1 (t), n−1Wr

i
Y
i
(t)�p0 (t) and Z9 H (t)�e(t)

uniformly in tµ[0, t] in probability, where p0 (t)=E{Y1 (t)} and p1 (t)=E{Z1 (t)Y1 (t)}. The uniform-
ity can be shown, for example, by Corollary III.2 of Andersen & Gill (1982). Note that Z9 (t) also
converges to e(t).

We need to show that

n−D P t
0

{e(t)−Z9 H( t)} d ∑
n

i=1
r
i
M
i
(t)=o

P
(1). (A1)

Martingale theory does not apply because r
i
involves d

i
’s and is thus not predictable. We will

appeal to some results from empirical process theory.
First, let us deal with the case of independent Bernoulli sampling. Without loss of generality,

assume that Z
i
(t)�0 for all t; otherwise, decompose each Z

i
( . ) into its positive and negative parts.

For each i, the process r
i
M
i
( t) has mean zero and can be expressed as the sum of three

monotone processes on [0, t]. Thus, by van der Vaart & Wellner (1996, Example 2.11.16),
B
n
(t))n−DWr

i
M
i
(t) converges weakly to a tight Gaussian process B(t) with continuous sample

paths on [0, t].
Since Z9 H (t) is a product of two monotone processes which converge uniformly in probability to

p1 ( t) and p−1
0

(t), where p1 (t)p−10 (t)=e(t), we can use the following approach to prove (A1). By the
Skorokhod strong embedding theorem, convergence in probability and in distribution can be
transformed into almost sure joint convergence on another probability space. The repeated appli-
cation of integration by parts and the second Helly’s theorem imply that

n−D P t
0

Z9 H (t) dB
n
(t), n−D P t

0
e(t) dB

n
(t)

converge to the same limit ∆ e(t) dB(t) almost surely on the new probability space and hence in
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probability on the original space. This proves (A1). The readers are referred to M. Kulich’s 1997
University of Washington Ph.D. dissertation for details.

To prove (A1) and hence (9) when the subcohort is selected by possibly stratified simple random
sampling, we need the following proposition.

P. L et (j1, . . . , j
n
) be a random vector containing nA ones and n−nA zeros, with each

permutation equally likely. L et A1 (t), . . . , An
(t) be independent and identically distributed random

processes on [0, t] with nondecreasing sample paths, where E{A1 (0)}2<2 and E{A1 (t)}2<2. T hen

W
n
)n−D ∑

n

i=1
j
i
{A

i
−E(A

i
)}

converges weakly to a tight Gaussian process.

The finite-dimensional convergence of W
n
follows from Hájek’s (1960) central limit theorem while

the tightness follows from Example 3.6.14 of van der Vaart & Wellner (1996). The proposition
implies the uniform convergence of n−1Wr

i
Y
i
(t) and n−1Wr

i
Z
i
(t)Y

i
(t) to p0 (t) and p1 ( t), respect-

ively. Consequently, Z9 H (t)�e(t) uniformly in t in probability. Moreover, the proposition can be
applied within each of the K strata to show that B

n
(t))n−DWr

i
M
i
(t) converges weakly to B*(t),

which is a tight Gaussian process with continuous sample paths. The rest of the proof follows the
arguments used in the Bernoulli case.

A 2
Weak convergence of the cumulative baseline hazard estimator

Simple algebraic manipulation yields

LC
H
(t)−L0 (t)= ∑

n

i=1
r
i P t

0

1

Wn
j=1

r
j
Y
j
(s)

dM
i
(s)− (b@

H
−b0 )Th(t)− (b@

H
−b0 )T P t

0
{Z9 H (s)−e(s)} ds.

The third term is obviously o
P
(n−D ) uniformly in t. By Taylor expansion,

b@
H
−b0= (nD

A
)−1U

H
(b0 )+o

P
(n−D ).

By the arguments of Appendix 1, we have

nD ∑
n

i=1
r
i P t

0

1

Wn
j=1

r
j
Y
j
(s)

dM
i
(s)=n−D P t

0

1

p0 (s)
d ∑

n

i=1
r
i
M
i
(s)+o

P
(1),

where the right-hand side converges weakly to a Gaussian process. Therefore,

nD{LC
H
(t)−L0 (t)}=n−D P t

0

1

p0 (s)
d ∑

n

i=1
r
i
M
i
(s)−hT(t)D−1

A
n−D ∑

n

i=1
P t
0

{Z
i
(u)−e(u)} dM

i
(u)

+hT(t)D−1
A

n−D ∑
n

i=1
(1−d

i
)(1−j

i
/p
i
)S
i
(b0 )+o

P
(1).

This implies the weak convergence of the left-hand side to a zero-mean Gaussian process. The
calculation of the covariance function is now straightforward.

A 3
L imiting variance formulae

Under the conditions stated in § 4, the limiting variance of the normalised full-data pseudo-score
is given by

S
A
(b0 )=p

Z
(1−p

Z
) P 1

0

exp{−L0 (t)−b0t}
p
Z

exp(−b0t)+1−p
Z

dL0 (t)

+b0pZ (1−p
Z
)2 P 1

0

exp{−L0 (t)−b0t}
{p
Z

exp(−b0t)+1−p
Z
}2

dt.
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For b0=0, S
A
(0)=p

Z
(1−p

Z
)[1−exp{−L0 (1)}]. This is based on the results of Lin & Ying

(1994) and some straightforward calculations.
Write

K0=n q1−p(0)

p(0) r+ (1−n) q1−p(1)

p(1) r , K1= (1−g) q1−p(0)

p(0) r+g q1−p(1)

p(1) r ,
E1 (b0 )=p

Z P 1
0

{(1−p
Z
) exp(b0t)+p

Z
}−1 dL0 (t),

E2 (b0 )=L0 (1)−E1 (b0 )+b0− log{p
Z

exp (−b0 )+1−p
Z
},

for b0N0 and E1 (0)=p
Z
L0 (1), E2 (0)= (1−p

Z
)L0 (1). By simple algebra, we have

S
HB

(b0 )=K0 (1−p
Z
) exp{−L0 (1)}E2

1
(b0 )+K1pZ exp{−L0 (1)−b0}E22 (b0 ).

Specifically, S
HB

(0)=p
Z
(1−p

Z
){p

Z
K0+ (1−p

Z
)K1}L20 (1) exp{−L0 (1)}.

It is easy to show that S
HS
=S

HB
(b0 )−Q(b0 ), where

Q(b0 )=
1−p(0)

p(0)(1−p
V
)
{(1−g)p

Z
exp(−b0 )E2 (b0 )−n(1−p

Z
)E1 (b0 )}2

+
1−p(1)

p(1)p
V

{gp
Z

exp (−b0 )E2 (b0)− (1−n) (1−p
Z
)E1 (b0 )}2.

In particular,

Q(0)=q 1−p(0)

p(0)(1−p
V
)
+

1−p(1)

p(1)p
V
r [p

Z
(1−p

Z
)(g+n−1)L0 (1) exp{−L0 (1)}]2.

Substituting n=g=p
V
=1

2
into the expressions for S

HS
and S

HB
, we obtain the limiting pseudo-

score variances for unstratified sampling.
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