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SUMMARY

The accumulation of medical cost over time for each subject is an increasing stochastic process de�ned
up to the instant of death. The stochastic structure of this process is complex. In most applications, the
process can only be observed at a limited number of time points. Furthermore, the process is subject to
right censoring so that it is unobservable after the censoring time. These special features of the medical
cost data, especially the presence of death and censoring, pose major challenges in the construction of
plausible statistical models and the development of the corresponding inference procedures. In this paper,
we propose several classes of regression models which formulate the e�ects of possibly time-dependent
covariates on the marginal mean of cost accumulation in the presence of death or on the conditional
means of cost accumulation given speci�c survival patterns. We then develop estimating equations
for these models by combining the approach of generalized estimating equations for longitudinal data
with the inverse probability of censoring weighting technique. The resultant estimators are shown to be
consistent and asymptotically normal with simple variance estimators. Simulation studies indicate that
the proposed inference procedures behave well in practical situations. An application to data taken from
a large cancer study reveals that the Medicare enrollees who are diagnosed with less aggressive ovarian
cancer tend to accumulate medical cost at lower rates than those with more aggressive disease, but tend
to have higher lifetime costs because they live longer. Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: censoring; economic evaluation; generalized estimating equations; health care;
inverse probability of censoring weighting; pattern-mixture models.

1. INTRODUCTION

There is tremendous recent interest in the economic evaluation of health care. For instance,
many clinical trials now collect data on the costs of treatments. Similar data are routinely
collected by hospitals, insurance companies and disease registries. These data provide valuable
opportunities to ascertain the cost of treating patients with a particular disease, to compare
the costs of alternative intervention=prevention programmes, and to identify determinants of
medical cost.
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As an example, we consider the linked SEER (Surveillance, Epidemiology and End Re-
sults) Medicare database [1], which contains extensive information on 1264345 Medicare
enrollees over 65 years old who were diagnosed with cancer from 1973 to 1989. The data
on survival time and monthly medical expenditures were collected during the period of 1984
–1990. Detailed clinical, demographic and geographic information was also recorded. A ma-
jor objective was to determine how the costs of care for these subjects were a�ected by the
type of cancer diagnosed, the clinical stage of the disease, as well as the demographic and
geographic characteristics.
There are several complications with the SEER-Medicare database and other available data

sources. First, subjects may not survive beyond the time period of interest, and survival time
is related to cost accumulation. Secondly, both survival time and cost accumulation process
are subject to right censoring. In the SEER-Medicare database, censoring was caused by the
limited study duration; in other studies, loss to follow-up is also a major source of censoring.
Thirdly, the cost data are normally recorded in broad time intervals, say monthly or yearly
intervals, and no information is available on how the cost is accumulated within an interval.
In the SEER-Medicare database, the cost data were recorded in monthly intervals. Finally,
the costs in di�erent time intervals tend to be correlated. These complications pose major
challenges in the statistical analysis of cost data, especially the regression analysis. In fact,
it is not even obvious how to construct plausible regression models for such data. The type
of censoring encountered here cannot be handled by standard survival analysis methods, as
pointed out by Lin et al. [2] and elaborated in the next section.
Because of the aforementioned complications, there has been little progress in the develop-

ment of regression methods for incomplete medical cost data. Lin [3] showed how to perform
linear regression on the marginal mean of the total cost. The linear model, however, is not
�exible enough for this type of data, as will be discussed in the following. Furthermore, since
a subject who dies sooner has less time to accumulate cost, the marginal mean may not fully
capture the e�ects of covariates on cost accumulation, especially if the covariates (such as
treatment assignments) have substantial e�ects on the survival time. Currently, there does not
exist any method for separating the e�ects of covariates on the survival time from the e�ects
of covariates on the rate of cost accumulation.
In the next section, we present generalized linear models for the marginal mean of the total

cost and for the conditional means of cost accumulation given speci�c survival patterns; these
models provide great �exibilities in formulating the e�ects of covariates on various aspects
of cost accumulation. We then develop the corresponding estimating equations, which yield
consistent and asymptotically normal estimators. In Section 3 we assess the operating char-
acteristics of the proposed inference procedures in practical settings. In Section 4 we provide
an application to the aforementioned SEER-Medicare database. Some concluding remarks are
given in Section 5.

2. REGRESSION METHODS

2.1. Data structures

Suppose that data are collected on n study subjects over the time period (0; �]. For i=1; : : : ; n,
let Yi(t) be the cumulative cost up to time t. Although Yi(:) (i=1; : : : ; n) are de�ned in
continuous time, they can only be measured periodically. The potential observation time points
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Figure 1. De�nitions of time intervals and associated costs.

for Yi(:) (i=1; : : : ; n) are denoted by t1¡t2¡ · · ·¡tK ≡ �. Let Yki=Yi(tk) and yki=Yki − Yk−1; i
with t0=0 and Y0; i=0. These de�nitions are illustrated in Figure 1. It is assumed that K is
small relative to n.
Let Ti and Ci be the latent survival time and censoring time for the ith subject, and

let Zi(:) be the corresponding (possibly time-dependent) covariates. Write Xi=Ti ∧Ci, and
�i=I(Ti6Ci), where a∧ b= min(a; b), and I(:) is the indicator function. Naturally, there is
no further accumulation of cost after death so that Yi(t)=Yi(t ∧Ti) and Yki=Yi(tk ∧Ti).
As in the case of Yi(:), the sample path of Zi(:), as a continuous-time process, can seldom be

completely observed. Most applications only involve time-independent covariates. To enhance
modelling capabilities, we allow covariates to depend on time intervals. Speci�cally, let Zki
denote a p× 1 vector of covariates for the ith subject in the kth time interval.
In practice, the population is heterogeneous in that subjects accumulate costs at di�erent

rates over time. As illustrated in Figure 2, a subject who accumulates costs at higher rates
tend to produce greater cumulative costs at both the censoring time and survival time than a
subject with lower accumulation rates, so that there is a positive correlation between Yi(Ci)
and Yi(Ti) even if Ci is completely independent of Ti and Yi(:). Because of this induced depen-
dence, standard survival analysis methods, which require independence of the response and
its censoring variable, cannot be applied to the censored cost data {Ỹi; �i;Zi(:)} (i=1; : : : ; n),
where Ỹi=Yi(Ti)∧Yi(Ci) or Yi(Ti ∧Ci).

2.2. Regression models

It is crucial to construct models which re�ect the underlying physical process and which can
be estimated from the available data. One useful class of models is the following generalized
linear models for the marginal distributions of the yki’s:

E(yki|Zki)=g(�′Zki); k=1; : : : ; K ; i=1; : : : ; n (1)

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:1181–1200
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Figure 2. Cumulative costs at survival times and censoring times for two subjects in a
heterogeneous population: subject 2 accumulates costs at higher rates than subject 1.

where � is a p× 1 vector of unknown regression parameters, and g is a speci�c function
linking the linear predictor �′Zki to the marginal mean of yki. Identity and exponential link
functions, g(x)=x and g(x)=e x, are of particular interest in our context. The choice of g
depends on the substantive knowledge as well as the empirical evidence. The marginal means
modelled by (1) are highly relevant to public health because they are directly related to
the total medical cost in the population. Note that the distributional forms and dependence
structures for the yki (k=1; : : : ; K), that is, the stochastic features of Yi(:), are completely
unspeci�ed. Thus, (1) is semi-parametric.
The formulation in (1) allows the possibilities of identical or di�erent regression e�ects

among the K intervals. To amplify this point, suppose that one is interested in the
e�ects of time-independent covariates Zi on cost accumulation. If one de�nes Z1i=(Z′

i ; 0′; : : : ;
0′)′; : : : ;ZKi=(0′; : : : ; 0′;Z′

i ; )
′ and �=(�′1; : : : ;�

′
K)

′, then �′Zki=�′kZi (k=1; : : : ; K) so that �k
pertains to the e�ect of Zi on medical cost in the kth interval. On the other hand, if one sets
Z1i= · · · =ZKi=Zi, then � is the common e�ect of Zi over the K intervals. Intermediate
models can also be created in which a subset of Zi has a common e�ect while the rest does
not.
Lin [3] studied the following special case of (1):

E(yki|Zi)=�′kZi ; k=1; : : : ; K ; i=1; : : : ; n (2)

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:1181–1200
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This model implies that

E(Yki|Z i)=
(

k∑
l=1
�l

)′
Zi ; k=1; : : : ; K ; i=1; : : : ; n (3)

Thus, the e�ects of covariates on the total cost up to � can be determined. Model (1) is much
more general than (2), not only because it allows non-identity link functions, but also because
it provides greater �exibilities in parameterizing the covariate e�ects.
Another important member of (1) is

E(yki|Zi)=�ke�′Z i ; k=1; : : : ; K ; i=1; : : : ; n (4)

which implies that

E(Yki|Zi)=
(

k∑
l=1
�l

)
e�

′Z i ; k=1; : : : ; K ; i=1; : : : ; n (5)

Note that Zi includes the constant 1 in (2) and (3), but not in (4) and (5). Models (4) and
(5) are reminiscent of the proportional hazards model [4], and are referred to as proportional
rates=means models in that the covariates have proportionate e�ects on the rate=mean of cost
accumulation over time. These models and the more general version of multiplicative or log-
linear models E(yki|Zki)=e�′Z ki (k=1; : : : ; K ; i=1; : : : ; n) are particularly appealing since the
yki’s are positive.
The fact that the yki’s are positive suggests that it may be more appropriate to express

the yki’s in (2) on a logarithmic scale. In theory, one may express the yki’s in (2) or other
members of (1) on any scale. Unfortunately,

∑k
l=1 yli=Yki only when the yki’s are de�ned on

the original scale. Furthermore, health care researchers are interested in the mean of the cost
on the original scale rather than on a transformed (for example, logarithmic) scale because
only the former can be translated into the total cost in the population. Thus, linear models
are not as useful as log-linear models for cost data.
The marginal means E(yki) and E(Yki) (k=1; : : : ; K ; i=1; : : : ; n) pertain to the actual costs

incurred by the subjects, incorporating the fact that subjects who die cannot accumulate fur-
ther cost. Thus, these measures and the associated regression models are highly important,
especially from the point of view of public health. The marginal means, however, tend to
be lower for the subjects who die sooner, so that an intervention that kills subjects tends to
reduce cost. Thus, it is also desirable to assess the e�ects of covariates on cost accumulation
among subjects with similar survival experiences.
To incorporate the survival information into the de�nition of cost accumulation, we con-

sider E(yki|Ti¿tk), the mean of the incremental cost in the kth interval (tk−1; tk] given that
the subject survives beyond that interval, and E(Yi|tk−1¡Ti6tk), the mean of the lifetime
cost Yi≡Yi(Ti) given that the subject dies in the kth interval (tk−1; tk]. The corresponding
generalized linear models take the form

E(yki|Ti¿tk ;Zki)=g(�′Zki); k=1; : : : ; K ; i=1; : : : ; n (6)

and

E(Yi|tk−1¡Ti6tk ;Zki)=g(�′Zki); k=1; : : : ; K ; i=1; : : : ; n (7)

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:1181–1200
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Again, the stochastic structures of Yi(:) are entirely arbitrary, so that the models are semi-
parametric. Both (6) and (7) are referred to as pattern-mixture models [5]. In general, � has
di�erent meanings among models (1), (6) and (7); we use the same notation for the sake of
simplicity. The above discussion on the choices of g and Zki for model (1) also applies to
models (6) and (7). The use of models (6) and (7) may provide valuable insights into the
underlying mechanisms of cost accumulation because the e�ects of di�erential survival times
are removed, although such models are not particularly useful in predicting future costs at the
baseline since the survival time is not known a priori.

2.3. Inference procedures

It is straightforward to make inference under model (6). Clearly, yki is known if Xi¿tk .
Assume that Ci is independent of Ti and Yi(:) conditional on Zi(:), so that

E(yki|Xi¿tk ;Zki)=E(yki|Ti¿tk ;Zki); k=1; : : : ; K ; i=1; : : : ; n

Then mimicking the generalized estimating equations with independence working assumption
[6], we propose the following estimating function for � of model (6):

U(�)=
n∑
i=1

K∑
k=1
I(Xi¿tk)h(Zki;�){yki − g(�′Zki)}Zki (8)

where h is a given scalar function. The choices of h are discussed in McCullagh and Nelder
[7] and Liang and Zeger [6] for K=1 and K¿1, respectively. For the aforementioned linear
and multiplicative models, it is reasonable to set h=1.
By the law of conditional expectations

E{U(�)}= E
[

n∑
i=1

K∑
k=1
I(Xi¿tk)h(Zki;�){E(yki|Xi¿tk ;Zki)− g(�′Zki)}Zki

]

= E
[

n∑
i=1

K∑
k=1
I(Xi¿tk)h(Zki;�){E(yki|Ti¿tk ;Zki)− g(�′Zki)}Zki

]
=0

Thus, U(�) is an unbiased estimating function for �. Denote the solution to U(�)=0 by �̂.
By standard asymptotic arguments [6], n1=2(�̂ − �) is asymptotically zero-mean normal with
a covariance matrix consistently estimated by

n{@U(�̂)=@�′}−1
n∑
i=1

[
K∑
k=1
I(Xi¿tk)h(Zki; �̂){yki − g(�̂′Zki)}Zki

]⊗2
{@U(�̂)=@�′}−1

Here and in the following, we adopt the notation a⊗0=1; a⊗1=a and a⊗2=aa′.
Inference under model (1) is more delicate. If all the yki’s were known, then the generalized

estimating equation (with independence working assumption) for � of (1) would take the form

n∑
i=1

K∑
k=1
h(Zki;�){yki − g(�′Zki)}Zki=0

In the presence of censoring, not all yki are observable, so that the above equation ought to
be modi�ed. Let T ∗

ki =Ti ∧ tk , and �∗ki=I(Ci¿T ∗
ki ). Clearly, yki is known if and only if �

∗
ki=1.

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:1181–1200
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De�ne Fi(t)={I(Ti6t); Yi(t);Li(t)} and G(t| �Fi)= Pr{Ci¿t| �Fi(Ti)}, where Li(:) denotes all the
measured covariate processes and �H(t)={H(s): s6t} for any process H(:). We then propose
the following estimating function:

U(�)=
n∑
i=1

K∑
k=1

�∗ki
Ĝ(T ∗

ki | �Fi)
h(Zki;�){yki − g(�′Zki)}Zki (9)

where Ĝ(t| �F) is a consistent estimator of G(t| �F). For notational simplicity, the resulting
estimator is also denoted by �̂.
The proposed estimating function includes only the non-censored yki’s, but their contribu-

tions are weighted by their (estimated) inverse probabilities of inclusion. This is commonly
referred to as inverse probability of censoring weighting (IPCW) and is reminiscent of the
Horvitz–Thompson estimator [8]. The IPCW technique was previously used by Koul et al.
[9], Robins and Rotnitzky [10], Lin and Ying [11] and Zhao and Tsiatis [12] in di�erent
contexts. The estimating function for model (2) developed by Lin [3] is a special case of (9).
If censoring occurs in a completely random fashion, we may set Ĝ(·| �F) to be the Kaplan–

Meier estimator Ĝ(:) for the common survival function of Ci. Otherwise, we assume that the
hazard function corresponding to G(t| �Fi) satis�es the proportional hazards model [4]

�(t| �Fi)=�0(t)e�′Wi(t); i=1; : : : ; n (10)

where Wi(t) is a vector of known functions of Fi(t), � is a vector of unknown regression
parameters and �0(:) an arbitrary baseline hazard function. We then set Ĝ(t| �Fi) to be the
Breslow estimator [13]

Ĝ(t|Wi)≡ exp

{
−

n∑
j=1

��jI(Xj¡t)e�̂
′Wi(Xj)

S(0)(Xj; �̂)

}

where ��i=1− �i, �̂ is the maximum partial likelihood estimator of �, and

S(�)(t; �)=
n∑
i=1
I(Xi¿t)e�

′Wi(t)W⊗�
i (t); �=0; 1; 2

In the Appendix, we show that n1=2(�̂ − �) is asymptotically zero-mean normal with a
covariance matrix consistently estimated by n{@U(�̂)=@�′}−1∑n

i=1 �̂
⊗2
i {@U(�̂)=@�′}−1, where

the form of �̂i depends on how Ĝ is calculated. If Ĝ is the Kaplan–Meier estimator, then

�̂i=
K∑
k=1

�∗kih(Zki; �̂){yki − g(�̂′Zki)}Zki
Ĝ(T ∗

ki )
+ ��iQ(Xi)−

n∑
j=1

��jI(Xj6Xi)Q(Xj)∑n
l=1 I(Xl¿Xj)

where

Q(t)=
n∑
i=1

K∑
k=1

I(T ∗
ki¿t)�

∗
kih(Zki; �̂){yki − g(�̂′Zki)}Zki

Ĝ(T ∗
ki )

/
n∑
j=1
I(Xj¿t)

If Ĝ is the Breslow estimator, then

�̂i=
K∑
k=1

�∗kih(Zki; �̂){yki − g(�̂′Zki)}Zki
Ĝ(T ∗

ki |Wi)
+ ��iDi(Xi)−

n∑
j=1

��jI(Xj6Xi)e�̂
′Wi(Xj)Di(Xj)

S(0)(Xj; �̂)

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:1181–1200
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where Di(t)=Q(t) + B�
−1{Wi(t)− S(1)(t; �̂)=S(0)(t; �̂)}

Q(t) =
n∑
i=1

K∑
k=1

I(T ∗
ki¿t)e

�̂′Wi(t)�∗kih(Zki; �̂){yki − g(�̂′Zki)}Zki
Ĝ(T ∗

ki |Wi)S(0)(t; �̂)

B=
n∑
i=1

K∑
k=1

�∗kih(Zki; �̂){yki − g(�̂′Zki)}ZkiR′(T ∗
ki ;Wi)

Ĝ(T ∗
ki |Wi)

R(t;W) =
n∑
i=1

��iI(Xi¡t)e�̂
′W(Xi)

{
W(Xi)− S(1)(Xi; �̂)

S (0)(Xi; �̂)

}/
S(0)(Xi; �̂)

and

�̂=
n∑
i=1

��i

{
S(2)(Xi; �̂)
S(0)(Xi; �̂)

− S(1)(Xi; �̂)⊗2

S(0)(Xi; �̂)2

}

If �i=1, then both Yi and I(tk−1¡Ti6tk) are known. Thus, we propose to estimate � of
model (7) by the following analogue of (9):

U(�)=
n∑
i=1

K∑
k=1

�iI(tk−1¡Ti6tk)

Ĝ(Ti| �Fi)
h(Zki;�){Yi − g(�′Zki)}Zki (11)

The resulting estimator, again denoted by �̂, possesses the aforementioned asymptotic proper-
ties for the root of (9), but �∗ki and yki (k=1; : : : ; K ; i=1; : : : ; n) are replaced by �iI(tk−1¡Ti
6tk) and Yi throughout.
As evident from (11), the estimation of model (7) with interval-speci�c parameters requires

a few observed deaths in each time interval. Thus, the intervals cannot be too �ne for small
samples with heavy censoring. If the study period is not partitioned at all, then model (7)
becomes

E(Yi|Ti6�;Zi)=g(�′Zi) (12)

When intervals are broad, especially for model (12), it may be necessary to include some
functions of survival time in the covariate vector since medical cost tends to be highly cor-
related with survival time. The relationship between survival time and cost is often complex.
Thus, for large studies such as the linked SEER-Medicare database, it is desirable to use model
(7) with �ne intervals so that the e�ects of survival time on cost needs not be parameterized.

3. NUMERICAL STUDIES

Extensive simulation studies were carried out to evaluate the �nite-sample properties of the
inference procedures under models (1), (6) and (7). In general, these three models do not
hold with the same set of regression parameters. For simplicity of description, we present
here the simulation results for the situations in which the covariate e�ects are the same under
the three models.

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:1181–1200
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Survival and censoring times were generated from the exponential distribution with mean
m and the uniform (0; c) distribution, respectively. We set �=10, by which point all survival
times and cost accumulation processes are censored. The combinations of (m; c)=(5; 40);
(5; 20); (10; 40) and (10, 20) yield approximately 20, 30, 40 and 50 per cent censored survival
times.
The entire study period (0; 10] was divided into ten equally spaced intervals. We set

yki = [I(k=1)udi + I(Ti¿tk)(�i + uki)

+ I(tk−1¡Ti6tk){(�i + uki)(Ti − tk−1) + ufi }]e�
′Z i ; k=1; : : : ; K ; i=1; : : : ; n

where �i, uki, udi and u
f
i are independent random variables with the uniform (0,1) distribution

for �i and uki and uniform (0,5) and (0,10) distributions for udi and u
f
i , respectively. This

scheme creates J-shaped time patterns; there is some basic cost for each time interval in which
the subject is alive, in addition, there is a relatively high diagnostic cost for the �rst interval
and an even higher �nal cost for the interval in which the subject dies. For the same subject,
the basic costs in di�erent intervals share a common random e�ect and are thus positively
correlated.
It is easy to see that the cost data so generated satisfy models (1), (6) and (7) with the

same covariate e�ects. Speci�cally

E(yki|Zi) = �ke�′Z i ; k=1; : : : ; K ; i=1; : : : ; n (13)

E(yki|Ti¿tk ;Zi) = �ke�′Z i ; k=1; : : : ; K ; i=1; : : : ; n (14)

E(Yi|tk−1¡Ti6tk ;Zi) = �ke�′Z i ; k=1; : : : ; K ; i=1; : : : ; n (15)

Although the �k’s are di�erent among these three models, � is the same.
In our main studies, Z was set to be a treatment indicator with n=2 subjects in each of the

two groups, and � was set to 1. We chose n=100; 200 and 500. For n=100 and 200, it
is not always possible to �t model (15) because some intervals contain no death. Thus, we
considered the following special case of model (12):

E(Yi|Ti6�;Zi; Ti)=e�+�Zi+	Ti (16)

which also holds for the generated cost data. We �t model (16) under n=100, 200 and 500,
and �t model (15) only under n=500. We set h(Z ;�)=1 for all estimators.
The results from the main studies are summarized in Table I. The parameter estimators are

virtually unbiased in all cases. The standard error estimators re�ect well the true variabilities
of the parameter estimators and the associated Wald-type con�dence intervals have proper
coverage probabilities, at least for n¿200. The use of model (16) rather than (15) improves
the e�ciency of the parameter estimation and the accuracy of the asymptotic approximation,
though the e�ciency gain is minimal. Under models (13) and (14), the variances of the
estimators appear to decrease as m or c increases; under models (15) and (16), the variances
tend to decrease as the amount of censoring decreases.

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:1181–1200
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Table I. Simulation results for the estimation of � under models (13)–(16).

m c n Model (13) Model (14) Model (15) or (16)

Bias SE SEE CP Bias SE SEE CP Bias SE SEE CP

5 40 100 −0:003 0.82 0.81 0.944 −0:005 0.72 0.70 0.939 0.003 0.74 0.73 0.941
200 0.003 0.58 0.58 0.948 0.004 0.51 0.50 0.948 0.003 0.52 0.52 0.947
500 0.007 0.37 0.37 0.947 −0:001 0.32 0.32 0.947 −0:001 0.33 0.33 0.947

−0:001 0.34 0.33 0.945

5 20 100 −0:014 0.90 0.89 0.941 −0:006 0.74 0.72 0.940 0.003 0.80 0.78 0.940
200 0.001 0.64 0.63 0.945 0.003 0.52 0.51 0.945 0.003 0.56 0.55 0.945
500 0.004 0.40 0.40 0.948 −0:002 0.33 0.33 0.946 −0:001 0.35 0.35 0.948

−0:041 0.38 0.37 0.943

10 40 100 −0:004 0.75 0.74 0.943 0.000 0.65 0.63 0.940 0.004 0.85 0.82 0.940
200 −0:003 0.52 0.52 0.950 0.003 0.46 0.45 0.944 −0:002 0.59 0.58 0.941
500 0.003 0.33 0.33 0.949 −0:000 0.29 0.29 0.947 −0:003 0.37 0.37 0.947

−0:003 0.41 0.40 0.941

10 20 100 −0:012 0.81 0.80 0.944 −0:001 0.67 0.65 0.941 0.004 0.96 0.90 0.930
200 −0:002 0.57 0.57 0.946 0.003 0.47 0.46 0.942 0.001 0.65 0.64 0.943
500 0.004 0.36 0.36 0.948 −0:001 0.30 0.30 0.947 −0:002 0.40 0.40 0.946

−0:004 0.42 0.41 0.940

Bias is the mean of �̂ minus �; SE is the standard error of �̂; SEE is the mean of the standard error estimator
for �̂; CP is the coverage probability of the 95 per cent con�dence interval for �. Bias, SE and SEE are
multiplied by 10. Under the heading ‘Model (15) or (16)’, all the results pertain to model (16) except for
the last row of each block, which pertains to model (15). Each entry is based on 10000 simulation samples.

Additional studies revealed that the results were virtually unchanged when � was set to other
values. Furthermore, the asymptotic approximations continued to be accurate when covariates,
survival times, censoring times and costs were generated from other distributions.

4. SEER-MEDICARE DATABASE

We now apply the proposed methods to a subset of data from the aforementioned SEER-
Medicare database. This subset consists of all the 3550 Medicare bene�ciaries over the age
of 65 who were diagnosed with epithelial ovarian cancer during the years 1984–1989. Out
of these subjects, 540, 836 and 2174 were diagnosed with local, regional and distant stages,
respectively. It is of public-health importance to understand how the clinical stage at diagnosis
a�ects the subsequent survival experience and medical cost.
As mentioned in Section 1, the data on survival time and monthly medical expenditures

were recorded from 1984 to 1990. The subjects who were still alive at the end of 1990
were censored. Although the follow-up was terminated at the same time point, the actual
censoring times, as measured from the times of diagnosis, varied substantially among the
subjects because the times of diagnosis spanned a period of 6 years. There was no voluntary
loss to follow-up in this study, so that censoring, which was solely caused by limited study
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Figure 3. Kaplan–Meier estimates of the survival curves for ovarian cancer patients:
— local stage; · · · regional stage; – – – distant stage.

duration, can be regarded as completely random. Thus, the proposed methods with Ĝ as the
Kaplan–Meier estimator can be used.
Although the follow-up extended over a period of almost 7 years, the data for the last year

are very sparse, especially for the regional- and distant-stage patients, most of whom did not
survive to the 7th year. Thus, we con�ne our attention to the �rst 6 years after diagnosis.
With the cost data recorded in monthly intervals, there are a total of 72 intervals over the
6-year period.
To assess the di�erences among the three stages, we let Zi consist of two indicator covari-

ates with local stage as the reference group. If we allow both the intercepts and e�ects of
Zi to be interval-speci�c, then the model will be saturated with 216 parameters and the es-
timates so obtained will be basically equivalent to the non-parametric (one-sample) estimates
over the 72 intervals separated by the three stages. The question is whether the data can be
characterized by more parsimonious models.
Figure 3 displays the Kaplan–Meier estimates of the survival curves for the three stages. The

patients with less advanced disease tend to live longer. Under the proportional hazards model,
the hazard ratios for regional and distant stages versus local stage are estimated at 3.86 and
6.56, respectively, with very small standard error estimates. The 6-year survival probabilities
are approximately 55, 15 and 5 per cent for the local, regional and distant stages, respectively.
Figure 4 presents the non-parametric estimates of the mean cumulative costs for the three

stages, which are obtained by calculating {∑ �∗kiyki=Ĝ(T
∗
ki )}={

∑
�∗ki=Ĝ(T

∗
ki )} (k=1; : : : ; 72)

within each of the three groups and then accumulating them over the 72 intervals. The mean
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Figure 4. Non-parametric estimates of the cumulative marginal means of costs for ovarian cancer
patients: — local stage; · · · regional stage; – – – distant stage.

Table II. Regression estimates for the proportionate di�erences of the regional- and distant-stage patients
from the local-stage patients in medical costs.

Model Stage � e�

Est SE Est=SE 95% CI Est 95% CI

(13) Regional 0.106 0.053 2.02 (0:003; 0:209) 1.11 (1:01; 1:23)
Distant 0.058 0.047 1.25 (−0:033; 0:150) 1.06 (0:97; 1:16)

(14) Regional 0.554 0.046 11.95 (0:463; 0:645) 1.74 (1:59; 1:91)
Distant 0.758 0.040 18.85 (0:680; 0:837) 2.13 (1:97; 2:31)

(15) Regional 0.138 0.068 2.06 (0:006; 0:271) 1.15 (1:01; 1:31)
Distant 0.212 0.063 3.34 (0:088; 0:336) 1.24 (1:09; 1:40)

Local stage is the reference group. Est, SE and CI stand for estimate, (estimated) standard error and con�dence
interval, respectively. The weights h(Zki ; �) are set to 1 for all three models.

costs for the regional and distant stages are higher than those of the local stage for the �rst
two years but lower afterwards. The e�ects of covariates are not constant over time, at least
not on an additive or multiplicative scale.
The top panel of Table II provides the estimates of the common covariate e�ects under

model (13). These results are not terribly interesting since the model does not hold. The
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Figure 5. Non-parametric estimates of the cumulative conditional means of costs among survivors
for ovarian cancer patients: — local stage; · · · regional stage; – – – distant stage.

model misspeci�cation encountered here is similar to the violation of the proportional hazards
assumption for the Cox model. What is being estimated is an average of the (multiplicative)
covariate e�ects over time. Such an average does not adequately represent the actual covariate
e�ects when the e�ects are not in the same direction over time, as is clearly the case here.
As evident from Figure 3, the local-stage patients tend to live much longer than the regional-

and distant-stage patients, and thus have more opportunities to incur medical costs. This fact
may well explain the phenomenon seen in Figure 4. Thus, it is useful to compare the costs
among patients who have similar survival experiences, as argued in Sections 1 and 2.
Figure 5 displays the accumulation over time of the non-parametric estimates for the con-

ditional means of the costs among the survivors,
∑
I(Xi¿tk)yki=

∑
I(Xi¿tk) (k=1; : : : ; 72),

separated by three disease stages. The fact that the three curves appear to be proportionate
over time suggests that model (14) provides a reasonable description of the data. The esti-
mates from this model are shown in the middle panel of Table II. The conditional means for
the regional stage are approximately 75 per cent higher than those of the local stage, and the
conditional means for the distant stage are more than double those of the local stage.
Figure 6 shows the accumulation of the non-parametric estimates for the conditional means

among the deaths, {∑ �iI(tk−1¡Ti6tk)Yi=Ĝ(Ti)}={
∑
�iI(tk−1¡Ti6tk)=Ĝ(Ti)} (k=1; : : : ; 72).

The three curves seem roughly proportionate; however, the trends are not as clear as in
Figure 5 (for example, the di�erences between the regional stage and local stage appear to
be constant rather than increasing as time varies from year 3 to year 6). Thus, model (15)
is reasonable, though not entirely satisfactory. The results from this model are given in the
bottom panel of Table II. Based on the point estimates, the conditional means for the regional
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Figure 6. Non-parametric estimates of the cumulative conditional means of costs among deaths for
ovarian cancer patients: — local stage; · · · regional stage; – – – distant stage.

and distant stages are, respectively, 15 per cent and 24 per cent higher than those of the local
stage. The level of statistical signi�cance is lower under model (15) than under (14).
The above analysis indicates that the local-stage survivors tend to incur costs at much

slower rates than the regional-stage survivors and, to an even greater extent, the distant-stage
survivors. Among those who die in the same month, the total post-diagnosis costs for the
local-stage subjects tend to be slightly lower than those of the regional- and distant-stage
subjects. Because the subjects with less aggressive disease live longer, the long-term costs
for the local-stage subjects may well be higher than those of the regional- and distant-stage
subjects.
The results provided by conditional models (14) and (15) reveal that the interactions be-

tween time and stage e�ects in the marginal mean, as evident in Figure 4, is attributed
primarily to the fact that the survival rates are di�erent among the three disease stages. The
local-stage patients tend to accumulate costs at slower rates than the regional- and distant-
stage patients both when they are alive and around the time of death. Thus, the cumulative
marginal mean function for the local stage increases over time less rapidly than those of the
regional and distant stages, as shown in Figure 4. After two years, however, the curves begin
to converge because the local-stage patients tend to live longer so that their long-term costs
may catch up with or even surpass those of the regional- and distant-stage patients.
To further illustrate the proposed methodology, we add to models (13)–(15) a continuous

covariate, the time of �rst diagnosis. The results of the analysis are summarized in Table III.
There appears to be a negative time trend; the patients who are diagnosed later in calendar
time tend to have lower subsequent medical costs. The changes are fairly small, although
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Table III. Regression estimates for the proportionate e�ects of clinical stage and time of �rst
diagnosis on medical costs.

Model Parameter � e�

Est SE Est=SE 95% CI Est 95% CI

(13) Regional 0.101 0.052 1.94 (−0:001; 0:203) 1.11 (1:00; 1:22)
Distant 0.090 0.046 1.98 (0:001; 0:180) 1.09 (1:00; 1:20)
Time −0:060 0.008 −7:65 (−0:075;−0:044) 0.94 (0:93; 0:96)

(14) Regional 0.540 0.047 11.59 (0:448; 0:631) 1.71 (1:57; 1:88)
Distant 0.759 0.041 18.69 (0:680; 0:839) 2.14 (1:97; 2:31)
Time −0:021 0.007 −3:05 (−0:035;−0:008) 0.98 (0:97; 0:99)

(15) Regional 0.132 0.068 1.95 (−0:001; 0:264) 1.14 (1:00; 1:30)
Distant 0.221 0.063 3.48 (0:096; 0:345) 1.25 (1:10; 1:41)
Time −0:024 0.008 −2:94 (−0:039;−0:008) 0.98 (0:96; 0:99)

Regional and Distant compare the regional and distant stages with the local stage. Time refers to the time
(in years) of �rst diagnosis. Est, SE and CI stand for estimate, (estimated) standard error and con�dence
interval, respectively. The weights h(Zki ; �) are set to 1 for all three models.

highly signi�cant. The inclusion of the time variable has little e�ects on the estimates for the
di�erences among the three clinical stages.

5. DISCUSSION

In this paper we present three classes of models which address di�erent aspects of the as-
sociations between covariates and cost accumulation. The marginal mean is highly important
from the view of public health as it re�ects the actual costs. The conditional means are
more informative about the underlying mechanism of cost accumulation, but do not read-
ily translate into ultimate costs. The e�ects of covariates on the marginal and conditional
means can be quite di�erent especially when the covariates have substantial e�ects on sur-
vival time. The pattern-mixture models separate the covariate e�ects on survival time from
the covariate e�ects on the rate of cost accumulation, whereas the marginal models per-
tain to the ultimate costs given the actual survival distributions. As evident from the previ-
ous section, the application of the three types of models to the same data set can provide
more insights into the e�ects of covariates on cost accumulation than the use of a single
model.
The SEER-Medicare data was previously analysed by Etzioni et al. [14] and Lin [3].

Speci�cally, Etzioni et al. used the method of Lin et al. [2] to estimate the marginal mean
costs for the three clinical stages, while Lin [3] used the linear regression to estimate the
di�erences in the mean 5-year cost. The method of Lin et al. [2] requires that the censoring
time be discrete. As discussed in Sections 1 and 2, the linear model employed by Lin [3] has
severe limitations; neither Etzioni et al. [14] nor Lin [3] were able to examine the conditional
distributions of cost accumulation given speci�c survival patterns.
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The models considered in this paper, although �exible and versatile, are by no means
exhaustive. One may model the marginal means of the Yki’s rather than the yki’s through

E(Yki|Zki)=g(�′Zki); k=1; : : : ; K ; i=1; : : : ; n (17)

As evident from the discussion in Section 2.2, (17) is equivalent to (1) only under special
circumstances. Instead of conditioning on survival to the end of the interval, as in model (6),
one may condition on survival to the beginning of the interval and consider models of the
form

E(yki|Ti¿tk−1;Zki)=g(�′Zki); k=1; : : : ; K ; i=1; : : : ; n

A more elaborate version of (7) would be

E(yli|tk−1¡Ti6tk ;Zkli)=g(�′Zkli); k=1; : : : ; K ; l=1; : : : ; k; i=1; : : : ; n

under which covariates are allowed to have di�erent e�ects for the same time interval among
subjects who die in di�erent intervals. Inference procedures for these new models as well
as other types of marginal models can be developed along the lines of Section 2.3. Other
quantities which one might model, and comments on their interpretability, are given by Cook
and Lawless [15] in the context of recurrent events.
The proposed estimators for models (1) and (7) involve inverse probability weighting.

This kind of weighting generally does not lead to e�cient estimators. In some cases, one
can obtain e�cient estimators if the weights are estimated in the right way; see Robins
and Rotnitzky [10]. The special features of the cost data, including the presence of death
and the dependence of responses, means that e�cient estimating functions would take much
more complicated forms than the ones given here. Bang and Tsiatis [16] studied e�cient
estimation of the marginal mean in the one-sample case. The generalization of their results
to the regression setting is not straightforward, but is certainly worth pursuing.
In Section 4, we used the non-parametric estimates of the cumulative means to assess the

adequacy of the regression models. This approach is generally applicable, although continuous
covariates would need to be discretized for the purposes of model checking. The pragmatic
visual diagnostic could be improved by adding error bounds to the estimated curves. It should
be noted that the cumulative conditional means shown in Figures 5 and 6 are not interpretable
in terms of anything observable. Formal model checking can be performed by testing extra
parameters, such as covariates× time interactions, in embedded models [7] or by considering
certain aggregates of residuals [17].
Lin [18] proposed the following continuous-time model for the marginal distribution of the

accumulation process:

E{Yi(t)|Zi}=�0(t)e�′Z i ; i=1; : : : ; n (18)

where �0(:) is an arbitrary positive function, and developed simple methods for making in-
ference about �. This model is somewhat restrictive in that it imposes common proportionate
covariate e�ects over time, and thus would not be appropriate for the SEER-Medicare data.
Furthermore, the inference for � requires that censoring arise in a completely random fashion.
Model (18) implies models (4) and (5) with �k=�0(tk) − �0(tk−1). Unlike models (4) and
(5), the adequacy of model (18) cannot be checked empirically unless the entire sample paths
of {Yi(t); 0¡t6Ci} (i=1; : : : ; n) are observed.
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Semi-parametric inference with censored medical cost data is possible only under the fol-
lowing assumption on censoring:

�{t| �F i(Ti)}=�{t| �F i(t)}; t6Ti; i=1; : : : ; n

This assumption allows the probability of censoring over [t; t + dt) to depend on the history
up to t of the survival and cost accumulation processes as well as any measured covariate
processes. To estimate models (1) and (7), we formulate �{t| �Fi(t)} through (10), although any
other parametric or semi-parametric models may also be used. (If covariates are all discrete,
then non-parametric models may be used.) The adequacy of model (10) can be assessed via
existing goodness-of-�t methods for the proportional hazards model [19]. To estimate model
(6), we set �{t| �Fi(t)}=�{t| �Zi(t)}; under this restrictive assumption, the form of �{t| �Zi(t)}
need not be speci�ed at all. If censoring depends on other covariates besides Zi, then one
needs to formulate �{t| �Fi(t)} and then apply the IPCW technique to model (6). It is necessary
to use the IPCW technique for models (1) and (7) even if censoring is purely random.
This paper extends the prior work of Lin [3, 18] in several important directions. For mod-

elling the marginal means, model (1) is much more �exible and versatile than model (2); the
existing inference procedures for model (18) require censoring to be completely random and
may not have good e�ciencies. Models (6) and (7) are brand new, and allow one to separate
the e�ects of covariates on the survival time from the e�ects of covariates on the rate of cost
accumulation.
The estimation of medical cost studied in this paper is an important component in the

cost-e�ectiveness analysis. A number of authors have discussed how to measure and estimate
cost-e�ectiveness [20–23]. By combining their ideas with those presented in this paper, it
is possible to perform the cost-e�ectiveness analysis with covariate adjustments based on
censored data. The details will be communicated in a separate paper.

APPENDIX: PROOFS OF ASYMPTOTIC RESULTS FOR MODEL (1)

Let us make the decomposition U(�)=U1(�) +U2(�), where

U1(�) =
n∑
i=1

K∑
k=1

�∗ki
G(T ∗

ki | �Fi)
h(Zki;�){yki − g(�′Zki)}Zki

U2(�) =
n∑
i=1

K∑
k=1

G(T ∗
ki | �Fi)− Ĝ(T ∗

ki | �Fi)
G(T ∗

ki | �Fi)Ĝ(T ∗
ki | �Fi)

�∗kih(Zki;�){yki − g(�′Zki)}Zki
(A1)

The fact that E(�∗ki| �Fi)=G(T ∗
ki | �Fi) implies that U1(�) is a sum of n independent zero-mean

random vectors under model (1). Thus, by the law of large numbers, n−1U1(�) converges in
probability to 0. In addition, it follows from the consistency of the Kaplan–Meier and Breslow
estimators that n−1U2(�) also converges in probability to 0. Suppose that −n−1@U(�)=@�′ is
positive de�nite, at least for large n. It then follows from convex analysis that �̂ is a consistent
estimator of �.
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Under model (10)

n1=2{G(t|W)− Ĝ(t|W)}
G(t|W) = n−1=2

n∑
i=1

∫ t

0

e�
′W(x) dMi(x)
s(0)(x)

+ r′(t;W)�−1

×n−1=2
n∑
i=1

∫ ∞

0
{Wi(x)− �w(x)} dMi(x) + op(1) (A2)

where s(�)(t)= limn→∞ n−1S(�)(t; �) (�=0; 1; 2); �w(t)=s(1)(t)=s(0)(t)

r(t;W) =
∫ t

0
e�

′W(x){W(x)− �w(x)}�0(x) dx

�=
∫ ∞

0
{s(2)(t)=s(0)(t)− �w⊗2(t)}s(0)(t)�0(t) dt

and Mi(t)= ��iI(Xi6t)−
∫ t
0 I(Xi¿x)e

�′Wi(x)�0(x) dx [24]. In view of (A2)

n−1=2U2(�) = n−1=2
n∑
i=1

∫ ∞

0
Q̃(t) dMi(t) + B̃�

−1

×n−1=2
n∑
i=1

∫ ∞

0
{Wi(t)− �w(t)} dMi(t) + op(1)

where

Q̃(t)=n−1
n∑
i=1

K∑
k=1

I(T ∗
ki¿t)e

�′Wi(t)�∗kih(Zki;�){yki − g(�′Zki)}Zki
Ĝ(T ∗

ki |Wi)s(0)(t)

and

B̃=n−1
n∑
i=1

K∑
k=1

�∗kih(Zki;�){yki − g(�′Zki)}Zkir′(T ∗
ki ;Wi)

Ĝ(T ∗
ki |Wi)

By the law of large numbers and the consistency of the Breslow estimator, Q̃(t) and B̃
converge in probability to deterministic limits, say q(t) and b. Thus

n−1=2U2(�)=n−1=2
n∑
i=1

∫ ∞

0
[q(t) + b�−1{Wi(t)− �w(t)}] dMi(t) + op(1)

which in combination with (A1) yields n−1=2U(�)=n−1=2
∑n

i=1 �i + op(1), where

�i=
K∑
k=1

�∗ki
G(T ∗

ki | �Fi)
h(Zki;�){yki − g(�′Zki)}Zki +

∫ ∞

0
[q(t) + b�−1{Wi(t)− �w(t)}] dMi(t)

Since (�1; : : : ; �n) are independent zero-mean random vectors, the multivariate central limit
theorem entails that n−1=2U(�) converges in distribution to a zero-mean normal random vector
with covariance matrix V= limn→∞ n−1

∑n
i=1 �

⊗2
i .
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For the Kaplan–Meier estimator

n1=2{G(t)− Ĝ(t)}
G(t)

=n−1=2
n∑
i=1

∫ t

0

dMi(x)

(x)

+ op(1)

where 
(t)= Pr(Xi¿t) (i=1; : : : ; n); Mi(t)= ��iI(Xi6t) − ∫ t
0 I(Xi¿x)�(x) dx, and �(t)=

− d logG(t)=dt. The aforementioned asymptotic normality for n−1=2U(�) still holds, but with

�i=
K∑
k=1

�∗ki
G(T ∗

ki | �Fi)
h(Zki;�){yki − g(�′Zki)}Zki +

∫ ∞

0
q(t) dMi(t)

where

q(t)= lim
n→∞ n−1

n∑
i=1

K∑
k=1

I(T ∗
ki¿t)�

∗
kih(Zki;�){yki − g(�′Zki)}Zki
G(T ∗

ki | �Fi)
(t)

The Taylor series expansion of U(�̂) at U(�) yields

n1=2(�̂ − �)=Ã−1
(�∗)n−1=2U(�)

where Ã(�)= − n−1@U(�)=@�′, and �∗ is on the line segment between �̂ and �. The law of
large numbers, together with the consistency of �̂ and Ĝ, implies that Ã(�∗) converges in
probability to a deterministic matrix, say A. Therefore, n1=2(�̂ − �) converges in distribution
to a zero-mean normal random vector with covariance matrix A−1VA−1. The replacements of
the unknown quantities in �i with their sample estimators yield �̂i given in Section 2.2. The
consistency of the covariance matrix estimator for �̂ follows from the law of large numbers,
together with the consistency of Ĝ, �̂ and �̂.
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