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Goodness-of-Fit Analysis for the Cox Regression Model
Based on a Class of Parameter Estimators

D. Y. LIN*

In this article we propose a class of estimation functions for the vector of regression parameters in the Cox proportional hazards
model with possibly time-dependent covariates by incorporating the weight functions commonly used in weighted log-rank tests
into the partial likelihood score function. The resulting estimators behave much like the conventional maximum partial likelihood
estimator in that they are consistent and asymptotically normal. When the Cox model is inappropriate, however, the estimators
with different weight functions generally converge to nonidentical constant vectors. For example, the magnitude of the parameter
estimator using the Kaplan—Meier survival estimator as the weight function will be stochastically larger than that of the maximum
partial likelihood estimator if covariate effects diminish over time. Such facts motivate us to develop goodness-of-fit methods
for the Cox regression model by comparing parameter estimators with different weight functions. Under the assumed model,
the normalized difference between the maximum partial likelihood estimator and a weighted parameter estimator is shown to
converge weakly to a multivariate normal with mean zero and with a covariance matrix for which a consistent estimator is
proposed. The asymptotic properties of the weighted parameter estimators and those of the related goodness-of-fit tests under
misspecified Cox models are also investigated. In particular, it is demonstrated that a goodness-of-fit test with a monotone
weight function is consistent against monotone departures from the proportional hazards assumption. Versatile testing procedures
with broad sensitivities can be developed based on simultaneous use of several weight functions. Three examples using real data

are presented.
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1. INTRODUCTION

The Cox (1972) proportional hazards model specifies that
the hazard function for the failure time T of an individual
with a p X 1 vector of possibly time-varying covariates Z
has the following form

At Z) = Ao(®) exp{BoZ(1)}, (1.1)

where B, is a p X 1 vector of unknown regression param-
eters and Ay(#) is an unspecified baseline hazard function.
Let X = min(T, G), where G is the censoring time variable,
and let A = 1if X = T and A = 0 otherwise. Assume that
T and G are independent conditional on Z and that (X,, A;,
Z) (i = 1, ..., n) are independent and identically distrib-
uted replicates of (X, A, Z). Then the parameter vector 3,
is commonly estimated by B which maximizes the partial
likelihood function (Cox 1972; Cox 1975)

Al

- ,Zi Xi
1 -T] exp{BZ(X)}

; (1.2)
1| 2, () exp{B'Z; (X))}

where Y (1) = 1 if X; = ¢ and Y,(¥) = 0 otherwise. The

maximum partial likelihood estimator 3 possesses the usual

asymptotic properties of ordinary maximum likelihood es-

timators (Andersen and Gill 1982).

The immense popularity of the Cox regression model has
made the issue of model checking extremely important.
Several procedures have been suggested to verify the pro-
portional hazards assumption; see Lin (1989) for a review.
Virtually all of the existing goodness-of-fit tests for the
general Cox model, however, are based on some arbitrary
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partition of the time axis and/or are difficult to compute.
Consequently, goodness-of-fit analysis has rarely been per-
formed by the users of the Cox regression model despite
increasing awareness of the adverse effects of model mis-
specification on the statistical inference.

Gill and Schumacher (1987) presented a simple test of
the proportional hazards assumption for two-sample cen-
sored data. The rationale behind their procedure is that two
rank estimators of the hazard ratio, one of which assigns
relatively more weights to early failures than the other, should
give different answers in nonproportional hazards situa-
tions, especially when the hazard ratio is monotone.

This article extends the idea of Gill and Schumacher (1987)
to the general Cox regression model with possibly time-
varying covariates. In the next section, we introduce a class
of estimation functions for S, by incorporating the weight
functions commonly used in weighted log-rank tests into
the partial likelihood score function. The resulting weighted
parameter estimators are consistent for 8. In Section 3, we
show that under model (1.1) the difference between the
maximum partial likelihood estimator and a weighted pa-
rameter estimator is asymptotically normal with mean zero
and with a covariance matrix that can be consistently es-
timated. These results are used to develop goodness-of-fit
methods for the Cox model. The properties of the proposed
procedures under misspecified models are carefully inves-
tigated. Three examples using real data are provided in Sec-
tion 4 as illustrations.

2. WEIGHTED PARAMETER ESTIMATORS

Define S7(B, 1) = n~' =, Y;(2) exp{B'Z()}Z(6)®" for r
=0, 1, 2, where for a column vector a, a®? refers to the
matrix aa’, a®' to the vector a and a®° to the scalar 1. The
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logarithm of the partial likelihood function (1.2) can be ex-
pressed as

KB) = D, AIB'Z(X) — log{S(B, X)}.
i=1

The corresponding score function is

UB) = D, AMZ(X) — EB, X)}, @.1)
i=1

where E(B, 1) = SV(B, 1/S°(B, t). The maximum partial
likelihood estimator 3 is the solution to the system of par-
tial likelihood equations U(B) = 0. It has been shown that
the random vector n'/%(B — B,) is asymptotically normal
with mean zero and with a covariance matrix that can be
consistently estimated by C(8) = {n~'Sr, AV(B, X)},
where V(B, 1) = SP(B, 6/59(B, t) — EB, n** (Andersen
and Gill 1982).

The score function (2.1) is the sum over the failure times
of the difference between the observed value of Z,(X,) and
the conditional mean of Z;(X;) on {j: X; = X,} with respect
to a probability distribution proportional to exp{B'Z(X,)}.
In addition, all failures receive the same weight. Alterna-
tively, we may assign unequal weights to different failures
according to the times of their occurrences as in the case
of weighted log-rank tests (Tarone and Ware 1977). Spe-
cifically, let us define a class of weighted score functions
in the form

U.(B) = 2 AWXNZX) — EB, X)} 2.2)

and define the weighted parameter estimator j3, as the so-
lution to the system of estimation equations U, (8) = 0. The
random weight function W(¢) in (2.2) is a predictable sto-
chastic process that converges in probability to a non-
negative bounded function w(f) uniformly in ¢z € [0, ).
The weight functions commonly chosen for weighted log-
rank tests can be used here. Note that U,,(B) reduces to the
partial likelihood score function U(RB) if W(¢) = 1 and that
U,(B) is related to the Peto—Prentice generalization of the
Wilcoxon statistic (Peto and Peto 1972; Prentice 1978) if
W) = F(f), where F(-) is the left-continuous version of
the Kaplan—Meier estimator for the survival function of T
computed from the pooled sample. The asymptotic results
for the weighted parameter estimator 3, are established in
the following theorem.

Theorem 2.1. If model (1.1) holds, the random vector
n'?(B, — By) is asymptotically normal with zero mean and
with a covariance matrix that can be consistently estimated
by Cu(B) = AP 'B.PALP) ', where A B) = n”!
X 2L AWX)V(B, X;) and B,(B) = n! i=1 AiW(Xi)zv(Bs
X).

The proof of Theorem 2.1 is similar to the development
of the asymptotic theory for the maximum partial likelihood
estimator ﬁ given in Andersen and Gill (1982) and is there-
fore omitted.

Andersen (1983) proposed a class of explicitly comput-
able two-sample rank estimators of the hazard ratio. The
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estimators in that class generally differ from our estimators
exp(B,,)’s for the same weight functions. The Cox estimator
exp(B) always has a smaller asymptotic variance than any
member of Andersen’s family (Andersen 1983).

3. GOODNESS—OF—FIT ANALYSIS

When the assumed model (1.1) is valid, a weighted es-
timator ﬁw with a nonconstant weight function and the un-
weighted estimator ,é should be close to each other for a
given data set since both estimators are consistent. On the
other hand, the two estimators tend to differ under misspec-
ified models. For instance, if the effects of covariates di-
minish over time, then |8, with the Peto—Prentice weight
function F(-) is stochastically larger than ]B] These facts
motivate us to develop goodness-of-fit methods based on
the difference between fiw and ,3

Theorem 3.1. If model (1.1) holds, the random vector
n'’%(B, — P) is asymptotically normal with zero mean and
with a covariance matrix that can be consistently estimated

by D.(B) = C.(B) — C(P).

A crucial step in proving Theorem 3.1 is to show that
the random vectors n~"2U,(B,) and n™'/2U(B,) are asymp-
totically joint normal with a covariance matrix that can be
consistently estimated by A,(B). This can be accomplished
by the application of standard counting process techniques
(Andersen and Gill 1982) to the vector of local square-in-
tegrable martingales n~Y4U, (8o, ', U(Bo, 1)'}, where U(B,
t) and U,(B, ) are, respectively, the score function and
weighted score function evaluated at time ¢.

Goodness-of-fit procedures for the Cox regression model
can be derived from Theorem 3.1. In particular, the qua-
dratic form Q, = n(B, — B)'D,(B) (B, — B) has an
asymptotic central x> distribution on p degrees of freedom
when model (1.1) holds. The sources of model misspeci-
fication could be identified by component-wise compari-
sons of B and §,,.

In the two-sample case, the goodness-of-fit test 0,, does
not reduce to the test of Gill and Schumacher (1987), the
reason being that the latter employs the rank estimators of
Andersen (1983). Unlike the variance estimator used by Gill
and Schumacher (1987), the variance estimator for the pro-
posed test is always nonnegative.

In order to study the asymptotic behavior of the weighted
parameter estimator 3, and the goodness-of-fit test statistic
Q, under model misspecification, we define s”() =
YDA, Z2)Z@)®} and s7(B, 1) = E{ST(B, 1)} for r = 0,
1, 2, where € denotes the expectation with respect to the
true model of (X, A, Z). In addition, let

hJB) = f w(tYe(®) — e(B, H}s V() dt
0
and
AXPB) = f w{sPB, 0/5VB, ©) — eB, H®}sO) dt,
0

where e(?) = s(2)/s@) and e(B, 1) = sVB, /5B, o).
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Theorem 3.2. Under a possibly misspecified Cox model,
the weighted parameter estimator 8, converges in proba-
bility to a p X 1 vector of constants B¥, where B is the
unique solution to the system of equations 4,(B8) = O if the
matrix AX(B}) is positive definite.

The proof of Theorem 3.2 is similar to the proofs of lemma
3.1 in Andersen and Gill (1982) and of theorem 2.1 in
Struthers and Kalbfleisch (1986) and is not shown here. By
the arguments used in the proofs of theorems 3.2 and 4.2
of Andersen and Gill (1982), we can show that Dw(ﬁ) con-
verges in probability to a finite quantity. Hence, the fol-
lowing result is a direct outcome of Theorem 3.2.

Corollary 3.3. The goodness-of-fit test Q,, is consistent
against any model misspecification under which g% # B*
or h,(B*) # 0, where B* is the probability limit of .

Suppose now that we intend to test Hy: A(t; Z) = Ay(d)
exp{BoZ(1)} against H: A(t; Z) = Ay(f) exp{0(r)Z(¥)}, where
Z is a scalar and 6(?) is an unspecified monotone function
of ¢. Note that H, corresponds to monotone departures from
the proportional hazards assumption. It is easy to see that,
under H;, the function {e(?) — e(B*, £)} crosses the time
axis only at the point where 6(f) = B* because e(B, ?) is a
monotonically increasing function of 8 for any fixed ¢. Thus
h,(B*) # 0 if w(r) is monotone in #, which indicates that
Q,, with a monotone weight function is consistent against
H,.

Since monotone departures from the proportionality are
the most common and most important forms of model mis-
specification in real applications, we suggest that Q,, with
a monotone weight function such as F(+) be used. Other
weight functions may be supplemented to increase power
against nonmonotone alternatives. For example, the test with
W(-) = F(-){1 — F(")} is sensitive to quadratic trends. To
preserve a given overall type I error probability when sev-
eral weight functions are used simultaneously, a global test
based on the joint distribution of the differences between
the maximum partial likelihood estimator and the weighted
estimators of interest can be used.

4. EXAMPLES

A double-blind, placebo-controlled trial on the efficacy
of AZT (azidothymidine) for treating AIDS patients was
conducted in 1986 (Fischl, Richman, Grieco et al. 1987).
Two hundred eighty-one patients were enrolled in the ex-
periment, among whom 144 were assigned to AZT and 137
to placebo. By the end of the study, 25 patients in the AZT
group and 51 patients in the placebo group had developed
at least one opportunistic infection. As an illustration, the
Cox model is used to regress the time from entering the
trial to the first infection on the indicator function of AZT
and the logarithm of the current CD4 count, the latter co-
variate being time-dependent. Such a model is useful in
evaluating the role of CD4 change as a surrogate endpoint
in AIDS clinical trials. The maximum partial likelihood es-
timate B is (—.6029, —.7592)', and the weighted estimate
B, with the Peto—Prentice weight function is (—.5495,
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—.7507)'. The covariance matrix estimate DW(B) is

2446 —.0318
—.0318 .0645 |

Thus, the observed value of Q,, is 4.396 on 2 df, yielding
a p value of .111. The low p value is attributed to the con-
siderable difference between the weighted and unweighted
estimates of the AZT effect. Incidentally, partial likelihood
score tests indicate that both covariates are highly significant.

Two other examples will be mentioned briefly. The first
one of these uses data on the time to remission for two
groups of leukemia patients presented by Cox (1972). The
maximum partial likelihood estimate and the weighted es-
timate with the Peto—Prentice weight function are 1.5092
and 1.5382, respectively. The observed value of Q,, is .034
with a p value of .85. The Gill-Schumacher test using the
same weight function gives a p value of .72 (Gill and Schu-
macher 1987). The p value for the Q,, test with FO{1 -
F(-)} as the weight function is .32. Nearly all of the other
existing goodness-of-fit tests have also concluded that the
Cox model fits this data set well.

The last example uses the Veterans Administration lung
cancer data (Kalbfleisch and Prentice 1980, pp. 223-224).
Kalbfleisch and Prentice (1980, pp. 89-90) fit a propor-
tional hazards model with seven covariates to these data.
For that model, the maximum partial likelihood estimate
and weighted estimates give strikingly different results. The
p value for the Q,, test with the Peto—Prentice weight func-
tion is .00002, which strongly discredits the assumed model.

5. REMARKS

We have described a simple approach to analyzing the
fit of the Cox regression model. The results of the analysis
can be interpreted in a very natural way. The new proce-
dures can be easily incorporated into an existing computer
program for fitting the Cox model, and software is avail-
able from the author.

The sample-size requirement for the proposed methods
is similar to that of the standard Cox regression analysis.
The structure of the test statistic indicates that Q,, with an
appropriate weight function is rather sensitive to model
misspecification, which has been confirmed by our empir-
ical findings. For this reason, we recommend that users
should assess the practical importance of model misspeci-
fication by examining the magnitude of the difference be-
tween the unweighted and weighted estimators rather than
relying on the p value of the Q,, test alone.

The proposed goodness-of-fit methods formalize a graph-
ical technique suggested by Schoenfeld (1982). Schoenfeld
(1982) defined partial residuals for the proportional hazards
model as the difference between the observed covariate value
Z(X,) and its estimated conditional expectation E(B, X).
These residuals can be plotted against the time axis to vi-
sually examine the fit of the model and detect outlying co-
variate values.

[Received May 1990. Revised February 1991 .]
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