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The genetic dissection of complex human diseases requires large-scale association studies which explore the population
associations between genetic variants and disease phenotypes. DNA pooling can substantially reduce the cost of genotyping
assays in these studies, and thus enables one to examine a large number of genetic variants on a large number of subjects.
The availability of pooled genotype data instead of individual data poses considerable challenges in the statistical inference,
especially in the haplotype-based analysis because of increased phase uncertainty. Here we present a general likelihood-
based approach to making inferences about haplotype-disease associations based on possibly pooled DNA data. We
consider cohort and case-control studies of unrelated subjects, and allow arbitrary and unequal pool sizes. The phenotype
can be discrete or continuous, univariate or multivariate. The effects of haplotypes on disease phenotypes are formulated
through flexible regression models, which allow a variety of genetic hypotheses and gene-environment interactions. We
construct appropriate likelihood functions for various designs and phenotypes, accommodating Hardy-Weinberg
disequilibrium. The corresponding maximum likelihood estimators are approximately unbiased, normally distributed,
and statistically efficient. We develop simple and efficient numerical algorithms for calculating the maximum likelihood
estimators and their variances, and implement these algorithms in a freely available computer program. We assess the
performance of the proposed methods through simulation studies, and provide an application to the Finland-United States
Investigation of NIDDM Genetics Study. The results show that DNA pooling is highly efficient in studying haplotype-
disease associations. As a by-product, this work provides valid and efficient methods for estimating haplotype-disease
associations with unpooled DNA samples. Genet. Epidemiol. 28:70–82, 2005. & 2004 Wiley-Liss, Inc.

Key words: association tests; case-control studies; cohort studies; DNA pooling; EM algorithm; gene-environment
interactions; haplotype analysis; Hardy-Weinberg equilibrium; linkage disequilibrium; maximum likelihood; pooled
DNA samples; SNPs

Grant sponsor: National Institute of Health.
nCorrespondence to: Danyu Lin, Ph.D., Department of Biostatistics, University of North Carolina, McGavran-Greenberg Hall, CB #7420,
Chapel Hill, NC 27599-7420. E-mail: lin@bios.unc.edu
Received 13 July 2004; Accepted 5 September 2004
Published online 22 November 2004 in Wiley InterScience (www.interscience.wiley.com)
DOI: 10.1002/gepi.20040

INTRODUCTION

Complex human diseases, such as hypertension,
diabetes, and schizophrenia, are influenced by
multiple genetic variants and environmental ex-
posures, as well as gene-environment interactions.
The population associations between genetic
variants and disease phenotypes hold great
promise for understanding the genetic basis of
these diseases. With the availability of dense
single-nucleotide polymorphism (SNP) maps
across the genome, there is a proliferation of
SNP-based association studies [Botstein and
Risch, 2003].
Since haplotypes incorporate linkage disequili-

brium information from multiple markers, the use

of haplotypes tends to produce more powerful
tests of associations than the use of individual
SNPs [Akey et al., 2001; Fallin et al., 2001; Morris
and Kaplan, 2002; Zaykin et al., 2002]. Due to
unknown gametic phase, however, haplotypes in
general cannot be determined with certainty. It is
highly challenging to perform a haplotype analy-
sis based on unphased genotype data. A large
number of papers have been published on the
estimation of haplotype frequencies and haplo-
type-phenotype associations; see Zeng and Lin
[2004] for a review.
Because of disease heterogeneity, modest genetic

effects, and gene-environment interactions, asso-
ciation studies to identify complex disease genes
require hundreds or even thousands of subjects so
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as to achieve sufficient power. Despite the
continuing improvement in genotyping efficiency,
it is still very costly to genotype a large number of
subjects, especially in a comprehensive genome
scan. One strategy to reduce genotyping costs is
DNA pooling, such that pools of DNA samples
rather than individual samples are assayed [Arn-
heim et al., 1985; Pacek et al., 1993; Barcellos et al.,
1997; Daniels et al., 1998; Risch and Teng 1998;
Shaw et al., 1998; Amos et al., 2000; Sasaki et al.,
2001; Bansal et al., 2002; Barratt et al., 2003;
Mohlke et al., 2002; Sham et al., 2002]. An
additional advantage of DNA pooling is that the
amount of DNA required from each person for
each genotype can be dramatically reduced
[Mohlke et al., 2002]. Measuring pooled genotypes
instead of individual genotypes increases the
haplotype uncertainty and further complicates
the statistical analysis.
Several authors have studied the estimation of

haplotype frequencies based on pooled DNA data.
For two SNPs and two or three subjects per pool,
Wang et al. [2003] assessed the cost-effectiveness
of DNA pooling in the estimation of haplotype
frequencies. For multiple SNPs and multiple
subjects per pool, Ito et al. [2003] developed a
computer program which estimates the haplotype
frequencies by the EM algorithm [Dempster et al.,
1977] and which estimates the variances of
estimated haplotype frequencies by the bootstrap
method. Yang et al. [2003] provided analytical
variance estimators for the estimated haplotype
frequencies, and found that pool sizes of three to
four appear optimal. All the existing literature
assumes Hardy-Weinberg equilibrium. To our
knowledge, there is no published work on the
estimation of the effects of haplotypes on disease
phenotypes based on pooled DNA data.
Here, we develop simple and efficient statistical

methods for making inferences about haplotype-
disease associations based on potentially pooled
DNA data. We accommodate Hardy-Weinberg
disequilibrium and allow arbitrary and unequal
pool sizes. We construct appropriate likelihood
functions for a variety of study designs, disease
phenotypes, and association models. We show
that the maximum likelihood estimators have
desirable theoretical properties. We develop a
computer program which efficiently implements
the likelihood-based inference procedures. We
evaluate the performance of the proposed meth-
ods through Monte Carlo simulation and provide
an application to a major genetic study of type 2
diabetes.

METHODS

DEFINITIONS AND ASSUMPTIONS

Suppose that we collect genomic DNA samples
from n unrelated subjects. In order to reduce cost,
time, and labor, we genotype pools of DNA
samples rather than individual samples. Specifi-
cally, we construct J DNA pools with potentially
different sizes. For j ¼ 1; . . . ; J, let nj denote the
number of subjects in the jth pool such that
n ¼

PJ
j¼1 nj. We perform quantitative DNA typing

on each DNA pool at M linked loci. We focus on
the common situation of biallelic loci, and denote
the two alleles at each locus by 0 and 1. Following
previous authors [Wang et al., 2003; Ito et al., 2003;
Yang et al., 2003], we assume that the number of
allele copies for each pool at each locus can be
accurately determined by the quantitative DNA
typing. For j ¼ 1; . . . ; J, let Gj denote the pooled
genotype for the jth pool, which indicates the
number of allele 1 at each of the M loci. If no DNA
samples are pooled, then nj ¼ 1 for all j ¼ 1; . . . ; J,
and we observe the individual genotypes for all
study subjects.
For j ¼ 1; . . . ; J and i ¼ 1; . . . ; nj, let Hji ¼

ðhji1; hji2Þ denote the haplotype pair for the ith
subject of the jth pool, where hji1 and hji2 are two
specific sequences of zeros and ones. We do not
observe the individual haplotype pairs directly,
even when the pool sizes are one. Instead, we
observe the pooled genotype Gj ðj ¼ 1; . . . ; JÞ. By
definition,

Gj ¼
Xnj
i¼1

ðhji1 þ hji2Þ:

Because allele frequencies are commonly deter-
mined by fluorescence intensities in genotyping
assays, occasionally one knows for sure that a
given allele is present in the pool but cannot be
certain about the exact number of allele copies. In
some instances, no information is available at all
on some locus or loci. Thus, we allow Gj ðj ¼
1; . . . ; JÞ to contain missing values. Our methods
make maximum use of the available data under
the assumption that the missingness occurs at
random.
For the ith subject in the jth pool, let Yji be the

disease phenotype of interest, and let Xji be the
environmental variables or covariates. In associa-
tion studies, we are interested in estimating the
effects of Xji and Hji on Yji. Such a relationship can
be characterized by the conditional density func-
tion PðYjijXji;Hji; yÞ, where y is a set of unknown
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parameters. If one is interested in the effects of a
particular haplotype h� on a binary trait, then
PðYjijXji;Hji; yÞ may correspond to a logistic
regression model with the linear predictor

aþ b1fIðhji1 ¼ h�Þ þ Iðhji2 ¼ h�Þg
þ b2Iðhji1 ¼ hji2 ¼ h�Þ þ bT3Xji

þ bT4XjifIðhji1 ¼ h�Þ þ Iðhji2 ¼ h�Þg
þ bT5XjiIðhji1 ¼ hji2 ¼ h�Þ;

ð1Þ

where IðAÞ is the indicator function for event A,
taking the value 1 or 0 dependent on whether A is
true or false, a is the intercept, and b1, . . . , b5 are
the log odds ratios; for a quantitative trait, a
normal linear regression model with the same
linear predictor may be used. We obtain recessive,
dominant, and additive models by setting
fb1 ¼ 0; b4 ¼ 0g, fb2 ¼ �b1;b5 ¼ �b4g, and
fb2 ¼ 0; b5 ¼ 0g, respectively.
The selection of DNA samples for pooling is

random, and each sample is selected only once.
The selection may depend on the phenotype and
covariates, but is assumed to be independent of
the haplotype given the phenotype and covariates.
In addition, the haplotype and covariates are
assumed to be independent. The latter assumption
is necessary unless one is willing to model the de-
pendence between the haplotype and covariates.
Let K be the total number of distinct haplotypes.

For k ¼ 1; . . . ;K, let hk be the kth possible
haplotype, and let pk be the population frequency
of hk; for k; l ¼ 1; . . . ;K, let pkl be the probability
that the haplotype pair consists of hk and hl. All
the existing literature on the estimation of haplo-
type frequencies based on pooled genotype data
assumes Hardy-Weinberg equilibrium, such that
pkl ¼ pkpl ðk; l ¼ 1; . . . ;KÞ. It is possible to relax
this assumption. In particular, one may consider
the following form of Hardy-Weinberg disequili-
brium:

pkl ¼
p2k þ rpkð1� pkÞ;
ð1� rÞpkpl; k 6¼ l

�
ð2Þ

where r is the inbreeding coefficient or fixation
index [Weir, 1996, p. 93]. Excess homozygosity
and excess heterozygosity arise when r40 and
ro0, respectively. In the sequel, we denote the
probability density function of Hji by PðHji; gÞ,
where g represents the parameters in the haplo-
type distribution, which consists of the pks and r
under condition (2).
We will develop valid and efficient statistical

methods for estimating haplotype-disease associa-

tions under all commonly used study designs.
Rigorous proofs of the theoretical results pre-
sented in this article require very advanced
mathematical arguments. We will omit such
proofs, but refer interested readers to Zeng and
Lin [2004] for the kind of arguments that are
involved.

COHORT STUDIES

In a cohort study, there is a random sample of N
subjects. We observe the phenotypes and covari-
ates for all n subjects together with the pooled
genotypes for J pools. Some of the pooled
genotypes may be missing, either partially or
completely. The phenotype can be discrete or
continuous, and PðYjX;H; yÞ normally takes the
form of a generalized linear model [McCullagh
and Nelder, 1989]. If the phenotype pertains to
repeated measures in a longitudinal study, then
the generalized linear mixed model [Breslow and
Clayton, 1993] can be used.
The likelihood function for the parameters y and

g based on the data ðYji;Xji;GjÞ ðj ¼ 1; . . . ; J; i ¼
1; . . . ; niÞ is proportional to

YJ
j¼1

X
Hj2SðGjÞ

Ynj
i¼1

PðYjijXji;Hji; yÞPðHji; gÞ

8<:
9=;; ð3Þ

where Hj denotes ðHj1; . . . ;HjnjÞ, the nj haplotype
pairs in the jth pool, and SðGjÞ consists of all
possible combinations of nj haplotype pairs that
are compatible with the pooled genotype Gj such
that

Pnj
i¼1 ðhji1 þ hji2Þ ¼ Gj. If Gi is missing, either

partially or completely, then the set SðGiÞ is
enlarged accordingly.
By the arguments of Zeng and Lin [2004], it is

possible to estimate or identify g from the
observed data under condition (2), if there is a
positive probability for the 2nj haplotypes in some
pool j to be identical. Furthermore, if y is uniquely
determined from the distribution PðYjX;H; yÞ for
H ¼ ðhk; hkÞ ðk ¼ 1; . . . ;KÞ, then y is also identifi-
able. In particular, the latter is true of the
generalized linear model with linear predictor
(1). From now on, we assume that both y and g are
identifiable.
We can maximize the likelihood function given

in (3) directly or by using the expectation-
maximization (EM) algorithm [Dempster et al.,
1977] described in Appendix A. The resultant
maximum likelihood estimators (MLEs) are con-
sistent and asymptotically normal. The MLEs are
also asymptotically efficient in that they have the
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smallest variances among all valid estimators
of y and g, at least in large samples. The
covariance matrix for the MLEs can be estimated
by the inverse of the observed Fisher information
matrix.

CASE-CONTROL STUDIES WITH KNOWN
POPULATION TOTALS

In a case-control study, we select certain
numbers of cases and controls from a finite
population. Suppose that we know the total
numbers of cases and controls in the finite
population. Let n be the total number of subjects
in the case-control sample, and let N be the size of
the finite population. For subjects in the case-
control sample, the data are represented in the
same way as the cohort studies. For the ðN � nÞ
subjects not selected, we let Ym denote the disease
status for the mth subject, m ¼ nþ 1; . . . ;N.
The likelihood function based on such incom-

plete data takes the formYJ
j¼1

X
Hj2SðGjÞ

Ynj
i¼1

PðYjijXji;Hji; yÞPðHji; gÞPðXijÞ

8<:
9=;

�
YN

m¼nþ1

X
X;H

PðYmjX;H; yÞPðH; gÞPðXÞ
( )

; ð4Þ

where PðXÞ is the probability density function of
X, and the second summation is taken over all
possible values of X and H. The distribution of X
is an infinite-dimensional nuisance parameter
when there are continuous components in X.
Thus, it is mathematically and computationally
more difficult to deal with (4) than (3). In
Appendix B, we present an EM algorithm to
maximize (4). By the arguments of Zeng and Lin
[2004], the MLEs are consistent, asymptotically
normal, and asymptotically efficient. The var-
iances for the MLEs of y and g can be estimated by
the profile likelihood method described in Zeng
and Lin [2004]. It is simpler to make inference
about y and g based on the likelihood ratio
statistics than the Wald statistics.

CASE-CONTROL STUDIES WITH UNKNOWN
POPULATION TOTALS

Under the traditional case-control design, the
population totals of cases and controls are
assumed unknown. Since the sampling is condi-
tional on the case-control status, one should use

the retrospective likelihood function

YJ
j¼1

P
Hj2SðGjÞ

Qnj
i¼1 PðYjijXji;Hji; yÞPðHji; gÞPðXjiÞQnj

i¼1

P
X;H

PðYjijX;H; yÞPðH; gÞPðXÞ

8>><>>:
9>>=>>;:

ð5Þ
In general, this function may involve non-identifi-
able parameters, so that inferences about y and g
would be intractable.
In most case-control studies, the disease of

interest is relatively rare. In fact, this is the major
reason for the case-control design. For the logistic
regression with a rare disease, PðYjijXji;Hji; yÞ is
approximately equal to expfYjiaþ Yjib

TZðXji;
HjiÞg, where ea is close to 0, and ZðXji;HjiÞ is a
specific function of Xji and Hji. Then (5) becomes

YJ
j¼1

P
Hj2SðGjÞ

Qnj
i¼1 expfYjib

TZðXji;HjiÞgPðHji; gÞPðXjiÞQnj
i¼1

P
X;H

expfYjib
TZðX;HÞgPðH; gÞPðXÞ

2664
3775:
ð6Þ

As in the case of (4), this likelihood function
involves the distribution of X, which is possibly
infinite-dimensional. By extending the arguments
of Zeng and Lin [2004], we can show that all the
parameters in (6) are identifiable and the MLEs
derived from (6) are consistent, asymptotically
normal, and asymptotically efficient. In Appendix
C, we describe a simple and efficient procedure to
obtain the MLEs of b and g and to estimate their
variances. Numerical studies show that the rare
disease assumption works well when the disease
rate is less than 10% [Zeng and Lin, 2004].

COHORT STUDIES WITH AGE-OF-ONSET
PHENOTYPES

If one is interested in the age at onset of a
complex disease in a cohort study, then a subject
who has not developed the disease during his/her
follow-up will have a censored observation on the
phenotype, in that the age at onset is beyond the
duration of follow-up. For the ith subject in the jth
pool, let Yji denote the potential age-at-onset of
disease, Hji the haplotype pair, and Xji the
covariates. The proportional hazards model of
Cox [1972] specifies that the conditional hazard
function of Yji, given Xji and Hji, takes the form

lðyjXji;HjiÞ ¼ l0ðyÞeb
TZðXji;HjiÞ ð7Þ

where l0 is a completely arbitrary baseline hazard
function, ZðXji;HjiÞ is a specific function of Xji and
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Hji, and b is a set of regression parameters
pertaining to the log relative-risk.
Denote the potential censoring time on Yji by Cji,

which is assumed to be independent of Yji

conditional on Xji. The data consist of
ðeYYji;Dji;Xji;GjÞ ðj ¼ 1; . . . ; J; i ¼ 1; . . . ;njÞ, whereeYYji ¼ minðYji;CjiÞ and Dji ¼ IðYji � CjiÞ.
Model (7) is a semiparametric model with latent

explanatory variables, in that the baseline hazard
function is an infinite-dimensional parameter, and
the haplotype pairs are not directly observable. If
the individual haplotype pairs were directly
measured, then the partial likelihood principle
[Cox, 1972, 1975] could be used to estimate the
regression parameters b and the cumulative base-
line hazard function L0ðyÞ ¼

R y
0 l0ðtÞdt. The same

estimators could also be derived from the so-
called nonparametric maximum likelihood meth-
od [Bickel et al., 1993], which maximizes the
likelihood for the observable data with respect to
all the parameters, including the infinite-dimen-
sional ones. With pooled genotype data, the
partial likelihood would be intractable, whereas
the nonparametric maximum likelihood method
still yields simple and efficient estimators. Thus,
we maximize the following nonparametric like-
lihood function over b, g, and LYJ

j¼1

 X
Hj2SðGjÞ

Ynj
i¼1

LfeYYjigeb
TZðXji;HjiÞ

h iDji

:

�exp �LðeYYjiÞeb
TZðXji;HjiÞ

n o
PðHji; gÞ

!
; ð8Þ

where LðtÞ is an increasing step function, and
LfeYYjig is the jump size of LðyÞ at y ¼ eYYji, i.e., the
value of LðyÞ at y ¼ eYYji minus its value right
before eYYji. Denote the resultant estimators by bbb, bgg,
and bLL.
It can be shown that bLL is an increasing step

function with jumps only at the eYYji associated with
Dji ¼ 1. Thus, the calculation of bbb, bgg, and bLL is
tantamount to maximizing (8) over b, g, and the
jump sizes of L at those time points. We show in
Appendix D that this maximization can be carried
out efficiently through a simple EM algorithm.
The estimators are consistent, asymptotically
normal, and asymptotically efficient. The covar-
iance matrix for bbb and bgg can be obtained by the
inverse of the observed Fisher information matrix
for b, g, and the jump sizes of L, or by the profile
likelihood method.
We have implicitly assumed that the covariates

are time-invariant. If the Xji depend on time, then

we replace LðeYYjiÞeb
TZðXji;HjiÞ in (8) and (D1) withReYYji

0 eb
TZðXjiðyÞ;HjiÞdLðyÞ. The rest of the formulas

remain the same.
To accommodate non-proportional hazards re-

lationships, we consider the following class of
linear transformation models

PðYji � yjXji;HjiÞ ¼ QðLðyÞebTZðXji;HjiÞÞ;
where Q is a specific increasing function, and L is
an arbitrary increasing function. The choices of
QðxÞ ¼ 1� e�x and QðxÞ ¼ 1� ð1þ xÞ�1 corre-
spond to the proportional hazards model and
proportional odds model [Pettitt, 1982], respec-
tively. For this class of models, the nonparametric
likelihood function takes the formYJ
j¼1

 X
Hj2SðGjÞ

Ynj
i¼1

LfeYYjigeb
TZðXji;HjiÞQ0ðLðeYYjiÞeb

TZðXji;HjiÞÞ
h iDji

:

� 1�QðLðeYYjiÞeb
TZðXji;HjiÞÞ

n o1�Dji

PðHji; gÞ
!
;

where Q0ðxÞ ¼ dQðxÞ=dx. The corresponding
MLEs of y, g, and L can be obtained through an
optimization algorithm, such as fminunc in the
Optimization Toolbox of MATLAB. By the argu-
ments of Zeng and Lin [2004], the MLEs are
consistent, asymptotically normal, and asympto-
tically efficient. Inference on y and g can be carried
in the same manner as in the case of the
proportional hazards model.

RESULTS

APPLICATION TO FUSION STUDY

We consider a case-control sample from the
Finland-United States Investigation of NIDDM
Genetics Study [Valle et al., 1998]. The sample
consists of 796 case subjects with type 2 diabetes
and 415 control subjects. The subjects were
genotyped at five SNPs in a putative disease
susceptibility region on chromosome 22. The
distances between adjacent SNPs are less than
300 kb. In the sample, 131 cases and 82 controls
have missing genotype information for at least
one SNP. The observed haplotype frequencies for
the cases and controls are given in Table 1 of Zeng
and Lin [2004].
This case-control sample is not a DNA pooling

study, although DNA pooling was considered for
the FUSION Study [Mohlke et al., 2002]. For
testing the proposed methods, it is actually
preferable to use a data set with individual
genotyping, so that DNA pools of various sizes
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can be considered and the analysis with indivi-
dual genotype data provides a benchmark for the
analysis based on pooled genotype data. We pool
the subjects within the cases and controls sepa-
rately. We choose equal pool sizes except possibly
for the last pools. We create the pooled genotype
by aggregating the individual genotypes within
the same pool, and set the pooled genotype to
missing if any individual genotypes in the pool,
are missing. We pretend that pooled genotypes
rather than individual genotypes were measured,
and apply the methods for case-control studies
with unknown population totals.
Table I shows the estimates of the effects of

haplotypes on the risk of type 2 diabetes with pool
sizes of one, two, and four. We report the results
for the eight haplotypes with estimated frequen-
cies of at least 1% under the additive genetic
model, which was previously shown to be the
most appropriate model for this study [Zeng and
Lin, 2004]. No matter which pool size was used,
one would conclude that haplotype 01100 in-
creases the risk of type 2 diabetes, whereas
haplotype 10011 has a protective effect. There
are some differences in the point estimate among
different pool sizes, especially for the nonsignifi-
cant effects. There is only a slight increase in the
estimated variance as the pool size increases,
except for the last haplotype, which has the lowest
frequency.

SIMULATION STUDIES

To evaluate the empirical performance of the
proposed methods in practical situations, we
conducted Monte Carlo studies mimicking the
FUSION Study. We considered 796 cases and 415
controls. We generated haplotypes from the

estimated frequencies shown in Table I. We set r ¼
0:2 to demonstrate our ability to allow Hardy-
Weinberg disequilibrium, although there is little
inbreeding in the FUSION data. We considered
the additive, dominant, and recessive models for
haplotype 01100. We set the log odds ratio b to 0 or
0:35. Also, we set the intercept a to �3:7 so as to
yield an approximately 7% disease rate, which is
the rate of type 2 diabetes in US and Finnish
adults. For each SNP, we set the genotypes
to missing according to the proportions of miss-
ingness observed in the FUSION data. We
considered pooled genotypes with pool sizes of
one, two, and four, and assessed the proposed
methods for case-control studies with unknown
population totals.
The results of these studies are summarized in

Table II. The proposed parameter estimators are
virtually unbiased. The standard error estimators
accurately reflect the true variations of the para-
meter estimators. The associated confidence inter-
vals have proper coverage probabilities. The Wald
tests maintain their type 1 errors near nominal
levels. Under the additive model, there is only a
small increase of variance and a slight loss of
power as the pool size increases. The loss of
precision due to pooling is more appreciable
under the dominant model and even more so
under the recessive model, although the variances
increase at a slower pace than the pool size. These
results suggest that the proposed inference proce-
dures are adequate for practical use, and that
DNA pooling is efficient in association studies, at
least under the additive and dominant models.
We also carried out simulation studies for

haplotype 10000, which has a frequency of 1.4%.
We found that the asymptotic approximations
continue to be accurate and pooling to be efficient,

TABLE I. Estimates of haplotype effects for FUSION studya

Pool size¼1 Pool size¼2 Pool size¼4

Haplotype Frequency Est SE p-value Est SE p-value Est SE p-value

01011 0.130 0.056 0.140 0.689 �0.037 0.142 0.794 �0.061 0.153 0.689
01100 0.256 0.352 0.101 o0.001 0.408 0.106 o0.001 0.435 0.119 o0.001
10000 0.014 �0.173 0.402 0.667 0.003 0.418 0.994 0.164 0.458 0.721
10011 0.353 �0.332 0.096 o0.001 �0.323 0.096 0.001 �0.366 0.109 0.001
10100 0.053 0.141 0.223 0.527 �0.007 0.250 0.977 �0.061 0.253 0.810
10110 0.032 0.052 0.247 0.833 0.066 0.247 0.789 0.043 0.249 0.861
11011 0.139 �0.120 0.136 0.377 �0.106 0.143 0.459 �0.101 0.159 0.523
11100 0.011 0.065 0.680 0.924 �1.36 1.43 0.342 �1.65 5.97 0.782

aFrequency is estimated population frequencies, assuming 7% disease rate. Est, SE, and p-value pertain to estimate of log odds ratio,
standard error estimate, and two-sided p-value for testing no association, respectively. Additive genetic model is used.
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although the variances of the parameter estima-
tors tend to be large.
To further investigate the efficiency of DNA

pooling, we conducted another set of simulation
studies. We generated two SNPs with minor allele
frequencies of 0.4 and 0.5, and normalized the
linkage disequilibrium coefficient of D such that
the frequencies for haplotypes 11, 10, 01, and 00
are 0:2þ 0:2D, 0:2� 0:2D, 0:3� 0:2D, and
0:3þ 0:2D, respectively. We set the inbreeding
coefficient to 0.2. We focused on haplotype 11
under the additive, recessive, and dominant
models with b ¼ 0:5. We considered the case-
control design with 250 cases and 250 controls or
500 cases and 500 controls, and chose pool sizes of
one, two, four, six, and eight. For each configura-
tion, we simulated 1,000 data sets.
The results from the second set of studies are

displayed in Figures 1 and 2. Following Yang et al.
[2003], we define the relative efficiency for pool
size nj as the mean squared error for pool size 1
multiplied by nj and divided by the mean squared
error for pool size nj, and consider the pooling
efficient if the relative efficiency is greater than 1.
We observe that DNA pooling is efficient,
especially under the additive and dominant

models and under strong linkage disequilibrium.
The relative efficiency appears to be higher for the
estimation of haplotype-disease associations than
for the estimation of haplotype frequencies, espe-
cially when the linkage disequilibrium is weak.

DISCUSSION

DNA pooling can offer tremendous savings in
genotyping cost and DNA usage. There is a
natural concern that the precision of the associa-
tion analysis may be compromised due to the
unavailability of individual genotypes and the
increased haplotype uncertainty. Our investiga-
tions reveal that pooling is highly efficient in
terms of the number of genotyping assays
required for the same precision of estimation.
The proposed methods enable one to assess the
cost-effectiveness of DNA pooling and to conduct
the most efficient analysis for the completed DNA
pooling studies.
In evaluating the likelihood contribution from

the jth pool, one needs to consider all possible
combinations of nj haplotype pairs that are
compatible with the pooled genotype. This kind

TABLE II. Simulation results under the setup of FUSION studya

Model b Pool size Bias SE SEE CP Power MSE

Additive 0.0 1 0.0001 0.090 0.089 0.954 0.046 0.0081
2 0.0003 0.093 0.093 0.951 0.049 0.0086
4 0.0005 0.096 0.098 0.958 0.042 0.0093

0.35 1 0.001 0.085 0.085 0.943 0.985 0.0072
2 0.001 0.088 0.089 0.949 0.978 0.0077
4 0.004 0.092 0.096 0.957 0.972 0.0085

Dominant 0.0 1 �0.001 0.124 0.122 0.952 0.048 0.0154
2 �0.003 0.136 0.137 0.951 0.049 0.0186
4 0.002 0.143 0.147 0.954 0.046 0.0205

0.35 1 �0.003 0.121 0.121 0.955 0.814 0.0148
2 0.002 0.135 0.137 0.956 0.735 0.0182
4 0.003 0.145 0.147 0.955 0.674 0.0211

Recessive 0.0 1 0.0001 0.149 0.150 0.952 0.048 0.0223
2 �0.0009 0.210 0.211 0.952 0.048 0.0441
4 �0.0009 0.264 0.267 0.957 0.043 0.0698

0.35 1 �0.001 0.135 0.140 0.963 0.701 0.0183
2 �0.004 0.187 0.190 0.952 0.453 0.0348
4 0.004 0.233 0.239 0.953 0.327 0.0540

aBias and SE are bias and standard error of b̂b, respectively. SEE is mean of standard error estimator. CP is coverage probability of 95%
confidence interval. Power is actual type 1 error/power of Wald statistic for testing H0: b ¼ 0: MSE is mean squared error. Each entry is
based on 1,000 simulated data sets.
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of calculation is demanding. For this reason, the
existing literature on the estimation of haplotype
frequencies based on pooled genotype data is
confined to studies with small numbers of SNPs,
small pool sizes, and small sample sizes. The
efficient algorithm described in the second para-
graph of Appendix A makes it possible to
consider larger numbers of SNPs and larger pool
sizes, and to allow arbitrarily large sample sizes. It
takes 9 min to perform one analysis of the
FUSION data with pool size of 4 on an IBM
BladeCenter HS20 machine.
Despite our efficient algorithm, we can only

handle fairly small pool sizes ðo10Þ with the
current computer memory. Some researchers have
suggested pools of 30–40 individuals. It is diffi-
cult, however, to extract useful haplotype infor-
mation from such large pools. In order to
compensate for the substantial loss of precision

due to the use of large pools, one would need to
construct a large number of pools, which in turn
would require a very large number of subjects.
Thus, it may be a good comprise to have relatively
small pool sizes, especially as the cost of genotyp-
ing continues to decline.
If the pool sizes are all equal to one, then we

observe individual genotypes but we still do not
directly observe individual haplotypes. Several
methods exist for estimating haplotype-disease
associations based on individual genotype data;
see Zeng and Lin [2004] for a review. For this
special case, the methods presented here are more
general and more versatile than the existing ones.
We have focused on biallelic SNPs, the most

common form of genetic markers. Our methods
can be easily extended to other genetic variants,
such as microsatellite loci. The computing
time will depend on the number of haplotype

Fig. 1. Relative efficiencies in estimating haplotype effects.
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combinations that are compatible with pooled
genotypes.
In some applications, one may be interested in

treating each SNP as a separate unit. Then phase
uncertainty is not a concern. With pooled DNA
data, however, individual genotypes in general
cannot be determined with certainty. It is possible
to modify the likelihood-based approach taken in
this article to estimate the effects of multiple SNPs
on the disease phenotype with pooled SNP-
genotype data.
The choice between haplotype analysis and

single-marker analysis depends on a number of
factors, including the nature of the SNP-disease
association, the number and positions of disease-
causing SNPs, the extent and strength of linkage
disequilibrium, and the selection of markers.
Haplotype analysis is likely to be more powerful
than single-marker analysis if the causal SNPs are
not typed or if multiple SNPs act in cis rather than

in trans. Haplotype analysis also serves as an
effective data-reduction strategy, since the ob-
served number of haplotypes tends to be much
smaller than the theoretical number.
Yang et al. [2003] suggested the likelihood ratio

statistic for testing the equality of haplotype
distributions between cases and controls in case-
control studies. This test has ðK � 1Þ degrees of
freedom and may not be very powerful if the
majority of K haplotypes are unrelated to the
disease. More important, this approach does not
provide a quantification of the effects of haplo-
types on the disease phenotype; neither does it
allow assessment of gene-environment interac-
tions. By contrast, the proposed methods enable
one to efficiently estimate the effects of haplo-
types and environment variables on the risk of
disease.
Since our approach is built on likelihood, we

can use likelihood-based model selection criteria,

Fig. 2. Relative efficiencies in estimating haplotype frequencies.

Zeng and Lin78



such as the information criterion (AIC) of Akaike
[1985]. Specifically, we may select the model that
minimizes the AIC, which is given by �2logLþ 2p,
where L is the likelihood evaluated at the MLEs,
and p is the number of parameters in the model.
All the existing work on haplotype analysis, as

well as our work, assumes that the number of
allele copies in each DNA pool can be accurately
determined. There are several sources of errors in
quantitative genotyping assays, including unequal
amounts of DNA from individual samples in the
pool, preferential amplification of one of the
alleles, and experimental errors. The errors due
to unequal contributions from individual samples
are often negligible. Differential allelic amplifica-
tion can be corrected by a factor that is obtained
from reference samples of known allele frequen-
cies [Sham et al., 2002]. The proposed methods
should be adequate when the measurement errors
are small relative to the sampling errors. We can
formally adjust for measurement errors in the
inference on haplotype-disease associations if the
error rates can be determined, perhaps by com-
paring the pooled and individual genotypes for a
group of subjects and by genotyping a set of DNA
samples multiple times.
We have developed a general computer pro-

gram which implements the proposed methods.
This program is available from the authors upon
request.
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APPENDIX A

EM ALGORITHM FOR MAXIMIZING (3)

We derive an EM algorithm for the maximiza-
tion of (3) by treating the Hji as missing data.
Suppose that condition (2) holds with r � 0. Let
Bji be a Bernoulli variable with success probability
r, and let Q1ji andQ2ji be discrete random variables
with probability density functions PðQ1ji ¼
ðhk; hkÞÞ ¼ pk and PðQ2ji ¼ ðhk; hlÞÞ ¼ pkpl. Then
BjiQ1ji þ ð1� BjiÞQ2ji has the same distribution as
Hji, and we can treat Bji;Q1ji, and Q2ji instead of Hji

as missing. With this data augmentation, the
complete-data likelihood is proportional toYJ

j¼1

Ynj
i¼1

(
PðYjijXji;Hji; yÞrBjið1� rÞ1�Bji

�
YK
k¼1

p
BjiIðQ1ji¼ðhk;hkÞÞ
k

YK
k;l¼1

ðpkplÞð1�BjiÞIðQ2ji¼ðhk;hlÞÞ
)
:

Let Yj denote ðYj1; . . . ;YjnjÞ and Xj denote
ðXj1; . . . ;XjnjÞ. In the M-step of the EM algorithm,
we solve the following score equation for y:XJ

j¼1

Xnj
i¼1

E qlogPðYjijXji;Hji; yÞ=qyjYj;Xj;Gj

� �
¼ 0;

we estimate r and pk by

brr ¼ n�1
XJ
j¼1

Xnj
i¼1

EfBjijYj;Xj;Gjg

and

bppk ¼c�1
XJ
j¼1

Xnj
i¼1

"
E BjiIðQ1ji ¼ ðhk; hkÞÞjYj;Xj;Gj

� �
:

þ2
XK
l¼1

E ð1� BjiÞIðQ2ji ¼ ðhk; hlÞÞjYj;Xj;Gj

� �#
;

where c is a normalizing constant such thatP
k bppk ¼ 1. The conditional expectations in the

above expressions are calculated in the E-step as
follows: for any function oðBji;Q1ji;Q2jiÞ,

EfoðBji;Q1ji;Q2jiÞjYj;Xj;Gjg

¼

P
Hj2SðGjÞ

oðBji;Q1ji;Q2jiÞ
Qnj

i¼1 PðYjijXji;Hji; yÞPðHji; gÞP
Hj2SðGjÞ

Qnj
i¼1 PðYjijXji;Hji; yÞPðHji; gÞ

;

ðA:1Þ

where y and g are evaluated at their current
estimates. If condition (2) with r � 0 does not
hold, then the estimator of g in the M-step does
not have an explicit form, and we solve instead
the following score equation:XJ

j¼1

Xnj
i¼1

E qlogPðHji; gÞ=qgjYj;Xj;Gj

� �
¼ 0:

The main computational burden lies in the
evaluation of (A1). The following representation
greatly facilitates this evaluation. We can express
(A1) as

P
Gji�Gj

P
Hji2SðGjiÞ

oðBji;Q1ji;Q2jiÞPðYjijXji;Hji; yÞPðHji; gÞ
( )

GjiðGj � GjiÞ

P
Gji�Gj

P
Hji2SðGjiÞ

PðYjijXji;Hji; yÞPðHji; gÞ
( )

GjiðGj � GjiÞ
;

where

Gjiððg1; . . . ; gMÞÞ ¼
X

Gj1þ���Gj;i�1þGj;iþ1þ���Gj;nj
¼ðg1;...;gMÞ

�
Y
s 6¼i

X
Hjs2SðGjsÞ

PðYjsjXjs;Hjs; yÞPðHjs; gÞ

8<:
9=;;

Gji � Gj means that all the M SNP-genotype
values of the ith subject in the jth pool are less
than or equal to those of the jth pool, and Gj � Gji
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pertains to the difference of the two M-vectors. To
calculate Gjiððg1; . . . ; gMÞÞ, we introduce ðnj � 1Þ
M-variate polynomials

Ojsðx1; . . . ; xMÞ ¼
X

ðg1;...;gMÞ2G
Cs
g1;...;gM

x
g1
1 � � � xgMM ;

s ¼ 1; . . . ; nj; s 6¼ i;

where G denotes the set of all possible genotypes
in M SNPs and

Cs
g1;...;gM

¼
X

Hjs2Sððg1;...;gMÞÞ
PðYjsjXjs;Hjs; yÞPðHjs; gÞ:

Then Gjiðg1; . . . ; gMÞ corresponds to the coefficient
of x

g1
1 � � � xgMM in the product

Q
s 6¼i Ojsðx1; . . . ; xMÞ:

These coefficients can be obtained, for example,
from the Symbolic Math Toolbox of MATLAB.

APPENDIX B

EM ALGORITHM FOR MAXIMIZING (4)

Assume that condition (2) holds with r � 0. Let
Bji, Q1ji, Q2ji, Yj and Xj be as defined in Appendix
A. For the subjects not selected, we attach Xm, Hm,
Bm, Q1m, and Q2m to Ym ðm ¼ nþ 1; . . . ;NÞ. In the
M-step, we solve the following score equation for y,XJ

j¼1

Xnj
i¼1

E qlogPðYjijXji;Hji; yÞ=qyjYj;Xj;Gj

� �
þ
XN

m¼nþ1

E qlogPðYmjXm;Hm; yÞ=qyjYmf g ¼ 0;

we estimate r and pk by

N�1
XJ
j¼1

Xnj
i¼1

EðBjijYj;Xj;GjÞ þ
XN

m¼nþ1

EðBmjYmÞ

8<:
9=;

and

c�1
XJ
j¼1

Xnj
i¼1

EfBjiIðQ1ji ¼ ðhk; hkÞÞjYj;Xj;Gjg
"

þ2
XK
l¼1

Efð1� BjiÞIðQ2ji ¼ ðhk; hlÞÞjYj;Xj;Gjg
#

þ c�1
XN

m¼nþ1

EfBmIðQ1m ¼ ðhk; hkÞÞjYmg
"

þ2
XK
l¼1

Efð1� BmÞIðQ2m ¼ ðhk; hlÞÞjYmg
#
;

where c is the normalizing constant. In addi-
tion, we estimate PðXÞ as a mass function at
the distinct values of the Xji: the mass at x is
equal to

N�1
XJ
j¼1

Xnj
i¼1

IðXji ¼ xÞ þ
XN

m¼nþ1

EfIðXm ¼ xÞjYmg

24 35:
The conditional expectations in the above expres-
sions are calculated in the E-step: for j ¼ 1; . . . ; J,
i ¼ 1; . . . ; nj, and for any function oðBji;Q1ji;Q2jiÞ,
the conditional expectation EfoðBji;Q1ji;
Q2jiÞjYj;Xj;Gjg is given in (A1); for m ¼ nþ
1; . . . ;N and for any function oðBm;Q1m;
Q2m;XmÞ,

EfoðBm;Q1m;Q2m;XmÞjYmg

¼

P
B;Q1;Q2;X

oðB;Q1;Q2;XÞPðYmjX;H; yÞPðH; gÞPðXÞP
B;Q1;Q2;X

PðYmjX;H; yÞPðH; gÞPðXÞ ;

where y, g, and PðXÞ are evaluated at their current
estimates.

APPENDIX C

CALCULATION OF MLES OF y AND g BASED
ON (6)

Because the distribution of X is a potentially
infinite-dimensional nuisance parameter, we
wish to calculate the MLEs of b and g by profiling
(6) over the distribution function of X. By
algebraic manipulations similar to those given in
Appendix 4.4 of Zeng and Lin [2004], we can
show that profiling the logarithm of (6) over the
distribution function of X is equivalent to pro-
filing the following function over the scalar
parameter m:

XJ
j¼1

log

" X
Hj2SðGjÞ

:
Ynj
i¼1

expfYjib
TZðXji;HjiÞgPðHji; gÞpYjifð1� pÞmg1�YjiP1

y¼0

P
H

expfybTZðXji;HÞgPðH; gÞpyfð1� pÞmg1�y

#
;
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where p is the proportion of cases in the case-
control sample. The above expression is the log-
likelihood function for a cohort study in which the
conditional distribution of Yji and Hji given Xji

has the probability density functionePPðYji;Xji;Hji; y; gÞ

¼
expfYjib

TZðXji;HjiÞgPðHji; gÞpYjifð1� pÞmg1�YjiP1
y¼0

P
H

expfybTZðXji;HÞgPðH; gÞpyfð1� pÞmg1�y

and in which the pooled genotypes Gj instead of
the individual haplotypes Hji are observed. Thus,

we can use the EM algorithm described in
Appendix A upon replacing PðYjijXji;Hji; yÞ
�PðHji; gÞ with ePPðYji;Xji;Hji; y; gÞ. Furthermore, the
inverse of the observed Fisher information matrix
can be used to estimate the covariance matrix of
the MLEs of y and g. In our variance estimation,
we approximate the observed Fisher information
matrix by the empirical covariance matrix of the
observed score function. Under condition (2) with
r � 0, we can use the data augmentation Hji ¼
BjiQ1ji þ ð1� BjiÞQ2ji introduced in Appendix A.
The M-step can then be simplified if we expressePPðY;X;H ¼ BQ1 þ ð1� BÞQ2; y; gÞ as

exp x0Yþ YbTZðX;HÞ þ
PK
k¼1

xkZk

� �
P

Y;B;Q1;Q2

exp x0Yþ YbTZðX;HÞ þ
PK
k¼1

xkZk

� � ;

where Zk ¼ BIðQ1 ¼ ðhk; hkÞÞ þ 2ð1� BÞ
P

l IðQ2 ¼
ðhk; hlÞÞ ðk ¼ 1; . . . ;KÞ, and work with the new
parameters ðb; x0; x1; . . . ; xKÞ. Because the above

density function yields a concave log-likelihood,
the corresponding MLEs are unique and can be

easily obtained by the Newton-Raphson algo-
rithm.

APPENDIX D

EM ALGORITHM FOR MAXIMIZING (8)

Assume that condition (2) holds with r � 0. Let
Bji, Q1ji and Q2ji be as defined in Appendix A.
Also, let eYYj denote ðeYYj1; . . . ; eYYjnjÞ and Dj denote
ðDj1; . . . ;DjnjÞ. In the M-step of the EM algo-
rithm, we estimate b by solving the following
equation:

and estimate L0ðtÞ byXJ
j¼1

Xnj
i¼1

IðeYYji � tÞDjiPJ
v¼1

Pnv
u¼1

IðeYYvu � eYYjiÞEfebTZðXvu;HvuÞjeYYv;Dv;Xv;Gvg
:

In addition, we estimate r and pk by

n�1
XJ
j¼1

Xnj
i¼1

EfBjijeYYj;Dj;Xj;Gjg

and

c�1
XJ
j¼1

Xnj
i¼1

"
EfBjiIðQ1ji ¼ ðhk; hkÞÞjeYYj;Dj;Xj;Gjg

þ 2
XK
l¼1

Efð1� BjiÞIðQ2ji ¼ ðhk; hlÞÞjeYYj;Dj;Xj;Gjg
#
;

where c is the normalizing constant. In the above
expressions, the conditional expectation
E½oðBji;Q1ji;Q2ji;XjijeYYj;Xj;Dj;Gj� is evaluated in
the E-step according to the formula

where b, g, and L are evaluated at their current
estimates.

P
Hj2SðGjÞ

oðBji;Q1ji;Q2ji;XjiÞ
Qnj

i¼1 exp Djib
TZðXji;HjiÞ � LðeYYjiÞeb

TZðXji;HjiÞ
n o

PðHji; gÞ

P
Hj2SðGjÞ

Qnj
i¼1 exp Djib

TZðXji;HjiÞ � LðeYYjiÞeb
TZðXji;HjiÞ

n o
PðHji; gÞ

; ðD1Þ

XJ
j¼1

Xnj
i¼1

Dji

"
EfZðXji;HjiÞjeYYj;Dj;Xj;Gjg �

PJ
v¼1

Pnv
u¼1

IðeYYvu � eYYjiÞEfZðXvu;HvuÞeb
TZðXvu;HvuÞjeYYv;Dv;Xv;Gvg

PJ
v¼1

Pnv
u¼1

IðeYYvu � eYYjiÞEfeb
TZðXvu;HvuÞjeYYv;Dv;Xv;Gvg

#
¼ 0;
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