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“The accelerated failure Hme model provides a natural formulation of the effects of covariates on potentially censored response variable. The
existing semiparametric estimators are computaticnally intractable and statistically inefficient. In this article we propose an approximate
nonparametric maximum likelihood method for the accelerated failure time model with possibly time-dependent covariates. We estimate
the regression parameters by maximizing a kernel-smoothed profile likelihood function. The maximization can be achieved through con-
ventional gradient-based search algorithms. The resulting estimators are consistent and asymptotically normal. The limiting covariance
matrix attains the semiparameiric efficiency bound and can be consistently estimated. We also provide a consistent estimator for the error
distribution. Extensive simulation studies demonstrate that the asymptotic approximaticns are accurate in practical sitvations and. the new
estimators are considerably more efficient than the existing ones. IHastrations with clinical and epidemiologic studies are provided.
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1. INTRODUCTION

The proportionai hazards model (Cox 1972) and the acceler-
ated failure time model are the two major approaches to the
regression analysis of censored data (Cox and Oakes 1984,
chap. 5; Kalbfleisch and Prentice 2002, chap. 2). Due to the
availability of efficient inference procedures that are imple-
mented in all statistical software packages, the proportional
hazards model is used almost exclusively in practice. As noted
by D. R. Cox (Reid 1994, p. 450), however, the accelerated fail-
ure time model (i.e., the log-linear model} 15 “in many ways
more appealing because of its quite direct physical interpreta-
tion,” especially when the response variable does nof pertain
to failure time. This model may provide more accurate or more
concise summarization of the data than the proportional hazards
model in certain applications.

The presence of censoring poses major chalienges in the
semiparamelric analysis of the accelerated failure time model.
Rank estimators have been studied by Prentice (1978), Tsi-
atis (1990), Wei, Ying, and Lin (1990}, Lai and Ying (1991a),
Robins and Tsiatis (1992), Ying (1993}, Lin and Ying (1595),
Jones (1997), Yang (1997), and Zhou (2005), and least squares
estimators have heen studied by Buckley and James {1979), Ri-
tov (1990), and Lai and Ying (1991b). Because the estimat-
ing functions are discrete with poteatially multiple roots, it is
difficult to calculate these estimators and even more difficult
to estimate their variances. Recently, Jin, Lin, Wei, and Ying
(2003} and Jin, Lin, and Ying (2006) developed approximations
to these estimators that can be obtained through linear program-
ming, together with resampling procedures for variance esti-
mation. However, their methods cannot handle fime-dependent
covariates and are not computationally feasible for large data
sets. Furthermore, none of the existing estimators achieves the
semiparametric efficiency bound.

The efficient inference for the proportional hazards model is
based on the partial likelihood, which is a special case of the
profile likelihood. The profile likelihood fails for the acceler-
ated failure time model because the function is very discrete. In
this article we use kernel smoothing to construct a smooth ap-
proximation to the proiile likelihood function for the regression
parameters of the accelerated failure time model with possibly
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time-dependent covariates. The kernel-smoothed profile likeli-
hood function has a local expansion similar to that of the partial
likelihood function. The estimators that maximize this function
can be easily calculated by the Newton—Raphson algorithm or
any other optimization algorithms for smooth objective func-
tions. In addition, the estimators are consistent and asympioti-
cally normal, with a limiting covariance matrix that attains the
semiparametric efficiency bound and can be readily estimated.
Furthermore, we provide an explicit estimator for the error dis-
tribution.

The rest of the article is organized as follows. In Section 2
we describe the proposed estimation approach. In Section 3 we
present the asymptotic properiies of the new estimators. In Sec-
tion 4 we report the results of our simulation stadies. In Sec-
tion 5 we provide applications to two major medical studies.
We provide some concluding remarks in Section 6, and outline
the proofs of the asymptotic results in the Appendix.

2. ESTIMATION

Let 7 and X() denote the failure time and a 4-vector of
possibly time-dependent covariates. When the covariates are all
time-independent, the accelerated faiture time mode] takes the
[og-linear form ‘

logT = —B8"X +¢, (1)

where ¢ is a measurement error independent of X (Cox and
Oakes 1584, pp. 64-05; Kalbfleisch and Prentice 2002, p. 44).
To accommodate time-dependent covariates, we consider the
following extension:

T T
ef = fo e? X0 gy 2

{Cox and Oakes 1984, p. 67). For theoretical developments, it
is helpful to express model (2) in terms of hazard function. Let
A{r) and A (1) denote the hazard function and cumulative hazard
function of ¢, and let A7x(r) and Arx(¥) denote the condi-
tional hazard and cumulative hazard functions of T given X.
Then i

! .
Arx(t) = —logP(e > logf o Xee) cis)
. [
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! T
= A(] e? X(’)ds)
, 0
or, equivalently,

' | LTy s )BT
kﬂx(r)zk([ e? (")ds)eﬂ @
. o

Let ¢ denote the censoring time. For a random sample of
size n, the data consist of {¥;, A;, X (). i=1,...,n, where
Y = min(T;, C;), A = I(T; < C;), and I(-} is the indicator
function. We make the standard assumptions that C is indepen-
dent of T conditional on X and that the distsibution of C does
not depend functionalty on §. Then the log-likelihocd function
concerning S and A is

3

A(eR*'(‘B))], oy

n 'Y [ABTX () + A log (% 8)) —
i=l1

where R;(8) _logfy' ef X (9 ds.

The maximization of (4) with respect to f and A would
yield ihe nonparametric maximum likelihood estimators. Un-
forrunately, the maximum of (4) does not exist, as we Dow ex-
plain. In nonparametric maximum likelihood estimation, A 1s
considered a right-continuous function, so the objective func-
tion (4) becomes

n! Z[AiﬁTXi(Yi} + A;log AfeR P — AR,

where Aly} is the jump size of A(z) at ¢ =Y. Simple alge-
braic manipulations yield that for fixed g, the estimator of A
has jumps at the eRi(®) | and the jump size is equal to

A
Y I (BB = Ri(BYY

Plugging this expression into the objective function and dis-
carding constant terms, we obtain the profile log-likelihood
function for 8 as

n”! Z[AiﬂTxi (Y1) — A 1og{ZI(Rj(B) > Ri(8)) ”
i=] j=1

Because the second term depends only on the ranks of the &; g3
and these ranks are stable as 8 becores extreme, the objective
function cannot achieve its maximum for finite 8.

The reason why nonparametric maximum likelihood estima-
tion fails for the accelerated failure time model is that the es-
timator of A is very nonsmooth. Thus we are motivated to
seek a smooth version. It is not obvious, however, what kind
of smooth estimator should be used for A or, equivalently,
. To find such an estimator, we start with the sitmplest case
of a piecewise constant A. To be specific, we partitior an in-
terval containing all R B into J, equally spaced intervals,
O=ty < <- - <t =M, where M denotes an upper bound
for the R () over all possible 8’s in a bounded set. A piecewise
constant A takes the form

‘Iii'
Mey=) el (¢ el i)

k=1

.where 0/0
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Because for any ¢,

J) J,

n M £

AW = et =T (1 St <8+ > el (=1,
k=i k=1

the log-likelihood function (4) can be rewritten as

n Y ABTXi(Y)

i=1

Jn "
I’lgl ZlOgC,’([Z Ai[(eRi(ﬁ) € [tr—1, 1‘;3)]

k=1 i=1
IZC {Z (5B — 1)1 (1 < %P <)
i=l

M
UG ka)]- ©)

i=1

By differentiating with respect to ¢, we see that the solution to
the score equation of cy is

= (Z Aj{eR P ey, rk))>

i=1

n
/ (Z(ew )1 =M <)

=1
W
Ju

(RiB) > )=

+Z

and discarding an additive component irrelevant to 8, we obtain
the following sieve profile log-likelihood function:

L) =- ZA ATX: (V)

i=1

£, n
- l 7o RiB)
+k“1{n;AII(€ | E[Ik_l,tk))

i=1

R e gy, fk))}

{ZA)’ ‘(ﬁ)E[t‘k_l,rk)}

n
IS (P = )P €l 1)
j=l1

Even the function {£(8) is not smooth and may have muld-
ple local maxima, as illustrated in Figure 1(a). Thus we need

= 0. After plugging the equations for the ¢ into (5) B

[
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Fignre 1. Profile log-likelihcod functions for a simulated data set with = = 200 and a single uniform covariate. (a) Profile 10g likelihood
function with a piece-wise constant hazard fonetion. (b)-(d) Kernel-smoothed profile log-likelihood functions with bandwidths n™", n =1/5 and

vy

firther smeoothing on this function. We show in the supplemen-  and
tary technical report that as n — o¢, J, — oo, and Jp/n — 0, 1 & fiugr

I (8) converges uniformly in a compact set of § to —
nay —00
. i=1

e (Ea(i_)‘_s) ds — P(R(B) < logt)

(g = E[AﬁTX(Y) : _ - P(eR(,B) < t).
Al ( dP(A = 1, fOY HATXS g5 < ) Thus we approximate
o
8 dt AP(A =1, [ FTXO gs < 1)/de
Y Y ETX(s
/p(/ eﬂTX(“")dszt))| ] | | P(fy ef X0 ds =)
0 =fy eBTXD) g5 by
It suffices to seek a smooth approximation to 1{8) using the em- . | (na)"' 0 A K (RiBlost
pirical observations. Toward this end, we choose a kernel func- PR I —n R,»(ﬁ;—s .
tion K (-} with bandwidth a,. The theory of kernel estimation flog!(na") D=1 K( an )ds
indicates that under suitable regularity conditions, Because the expectation in [(8) can be approximated by the
n empirical measure, we obtain a kernel-smoothed approximation
L, K(EM) of 1(8),
nay, dp

i=1

(B = ZA BT (Y)—~ZA Ri(B)

dP(A =1,R(B) <5)
N .

ds s=logt
, 1o Ri(B) — Ri(B)
— R(B) - loe LA T AR
:dP(A_I,e Er)r | +ni§:1A;!o,;' § AK( . )}

di
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1 n 1 n (R;(BY—R:i (BN /an
— =% A;log —Z[ K(s)ds¢.
g " imY e

We propose to maximize [} (8) over § and denote the result-
ing estirmator as En. Because K (-) is a smooth kernel function,
we can use the Newton—Raphscn algorithm or cther gradient-
based search algorithms to calculate En. Figure 1({b)}-1(d)
shows the values of I (8) with various.choices of bandwidth
for a simulated data set. It is evident that an approprate choice

of bandwidth will lead to a smcoth profile likelihood function. |

We discuss the specific choices of the kernel function and band-

width in Section 4.
Given 8, we estimate A (f) by the following kernel-smoothed

estimator:
_ Ri (Bl
(nant)™' Yy AR (RrBalont,

Ry An —1 n )
a1 Z?:l ffoo(ﬁ 1—logt) /g K(Ll) du

(D)=

The corresponding estimator of A (£) is

- log: OIS OAK Ri(By)—s
An(t)=f ()™ 2im MK 6)

—c0 n—l Z?:I j'_(‘g;(ﬁn)_s)/an K(u)du

3. ASYMPTOTIC RESULTS

Let B and Mo denote the true values of § and A. For any
function g(-), let g(-) denote the first derivative of g(-) and let
g2y denote the rth derivative of g(-) {r > 0). We impose the
following regularity conditions:

{C.1) The true parameter value 8, belongs to a known com-
pact set B in R4,

(C.2) If there exists a constant vector » and a deterministic
function g(-) such that 3T X(T) = g(¢) with probabil-
ity 1, then y =0 and g = 0.

(C.3) Fort =0, Ap(#) is positive and thrice-continuously dif-
ferentiable with 15(0) > 0.

{C.4) The censoring time C has a positive and twice-contin-
uously differentiable density in [0, 1), and there ex-
ists a positive constant §g such that P(C = ¢|X (s),
5 < 1) > §p with probability 1.

(C.5) The kemne! function K(-) is thrice-continuounsly dif-
ferentiable, and K (-), r =0,1,2,3, have bounded
variations in {(~—o0, 00).

Remark 1. When X is time-independent, condition (C:2) is
equivalent to the condition where the column vectors of [1, XT]
are linearly independent with positive -probability. This con-
dition ensures the identifiability of the regression parameters.
Conditions (C.3) and (C.4) are the smoothness conditions im-

_posed on the underlying density functions. The second part of

. condition (C.4) states that at least some subjects are censored
at the end of the study. Condition (C.5) ensures that the kernel-
smoothed estimators used in £3(8) and their derivatives are con-
sistent approximations; condition (C.5) is satisfied by various
kernel functions, including Gaussian kernels and smooth ker-
nels with bounded support.

The consistency and asymptotic normality of B, are stated
next.
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Theorem 1. Suppose that conditions l(\C.l)—(C.S) hoid.and
that @, = n" with v € (0, —1/2). Then $, is strongly consis.
tent for B as n — o0.

Theorem 2. Suppose that conditions (C.1)~(C.5} hold and 7

that the first (m — 1) moments of K(-) are O for some m -
3 and @, =n” with v e (—1/2m, 71/6) Then, as- n -» o0,
Jr(B, — By) converges in distribution to a mean-0 normal ran.
dom vector with covariance matrix equal to the semiparametr
efficiency bound of 8.

Remark 2. The proof of Theorem 1.is based on the uniform,
approximation of [J (8) to a function with a unigue maximum af
B and makes use of the proof of theorem 5.7 of van der Vaart
(1998). The proof of Theorem 2 is based on the expansion of
the score function for ﬁn and relies on the modern empirical
process theory. In the proof we show that the inverse negative

second derivative of 2 (,8 ») can be used to estimate the agymp-.

totic covariance matrix of /n (,Sn Bo). Theorem 2 imposes
more stringent requirements on the choice of the kernel func-
tion and the bandwidth than Theorem 1, because consistency of
the first and second derivatives of the kernel density function is
needed in establishing the asymptotic distribution of 8,,. These
assumptions have been commonly made in the nonparametric
literature (e.g., Schuster 1969; Rao 1983, p. 238; Hart 1997,
p. 64); they are sufficient conditions and may not be necessary,

To describe the asymptotic properties of Ay, we introduce
some notation. Let I}; denote the efficient score function for 8,
which is defined in (A.2) of the Appendix. Write Ry = R(B¢),
RO(B) =3R(B)/38, RS =RW(By), and a®2 = aa”. Tn ad-
dition, let fz,|z, denote the conditional density of Z; given Z3,
and let fél Z denote the derivative of fz |z, with respectto Z).

Finally, let T denote any constant less than supy fur eBIX® gy
Theorem 3. Under the conditions of Theorem 2, \/E(X,, -
Agp) converges weakly in I%°{[0,7]) to a mean-0 Gaussian

process with covariance function E{Q(Y, A, X; ) 0(F, A, X;
§)}at {f, s) as n — 0o, where

o, A,X;1)

[ Afryials)

*“foo PRy > 5)

flogt E[A frya ()]
oo P(Ro>s)?

I(Rg > s)ds

logt E[A R((Jl) R SIA, R(]) (5]
+,[ { PRy > s)

-0

E[Afrya (NEIARY Fo 0 (5]
P(Ry > 5)2 }ds
:k®2 ¥
<E[l5 715, |
4. NUMERICAL STUDIES

We conducted numerous simulation studies to examine the
smali-sample performance of the proposed inference proce-
dures. We generated failure times from the following model:

logT =24 X1 + X2+,
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where X1 is Bernoulli with .5 success probability and X is
independent normal with mean 0. and standard derivation .5.
This is the same model used by Jin et al. (2006). We consid-
ered six error distributions: standard normal distribution; (stan-
dard) exiremne-value distribution; Weibull distributions with
hazard rates 2r and 1/(2./), denoted by Weibull(2, 1) and
Weibull(.5, 1); and mixtures of N(0, 1) and N(0, 9) with mix-
ing probabilities (.5, .5) and (.95, .05), denoted by SN{0, 1) +
SN(0, 9y and .95N(0, 1) + .05N(0, 9). (Weibull distributions
pertain to ‘e° rather than to ¢.) We generated censoring times
from the uniform [0, 7] distribution, where T was chosen to pro-
duce a 23% censoring rate. We set n2 to 100, 200, and 400.

We chose the kemel! function X {-) 1o be the standard normal
density for convenience and tractability. The smoothed profile
likelihood function involves the kernel density of (fog ¥ 4 8 ')
for uncensored subiects and the cumulative kernel density of
(log¥ + ATX) for all subjects. We used the optimal bandwidths
(Jones 1990; Jones and Sheather 1991), (8+/2/3)!/3c1n 1/°
and 413aon~173, where o1 and o ave the sample standard de-
viations of (log ¥ 4+ B87X) (with # being the initial value in the
estimation) among uncensored subjects and among all subjects.
Our experience indicated that the variance estimator may be
sensitive to the choice of bandwidsh, especially for heavy-tailed
error distributions. Thus in the variance estimation, we replaced
o1 and g7 by the mirimum of the sample standard deviation and
the interquartile range divided by 1.34, as suggested by the Sil-
verman {1986) rule of thumb for choosing bandwidth in kernel
estimation.

We obtained the estimates of the regression pararmeters using
the quasi-Newton search algorithm in MATLAB, which con-
ducts search within the trusted region to avoid local maxima.
We set the initial values to 0. We terminated the iterations when
the change in the function value or the gradient length was less
than 1020, We used the curvatures of [ (B,) to estimate the
variances.

For efficiency comparisons, we also included the log-rank
and least squares estimators as implemented by Jin et al. (2003,
2006). The log-rank and least squares estimators are asymptot-
ically efficient under the extreme-value and normal error dis-
tributions, respectively. We did not evaluate the variance esti-
mators because of heavy computational burdens, especially for
n =400, '

Table 1 summarizes the results of these studies. The proposed
estimators of 81 and f, are virtually unbiased. The variance es-

timators accurately reflect the true variations and the confidence.

intervals have proper coverage probabilities. Although it does
not satisfy the moment condition of Theorem 2, the Gaussian
kernel seems to provide desirable results. Under the normal er-
ror, the proposed estimators are slightly less efficient than the
least squares estimators and more efficient than the log-rank es-
timators. Under the extreme-value error, the proposed estima-
tors are slightly less efficient than the log-rank estimators and
more efficient than the least squares estimators, Under all other
error distributions, the proposed estimators are more efficient
than the log-rank and least squares estimators. The efficiency
gains are particularly substantial under the Weibull(2, 1) distri-
butios. '

The quasi-Newton algorithm converged very rapidly in all
of the simulation runs. Completing the simulatiens for the pro-
posed inference procedures took approximately 2 hours on an
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IBM BladeCenter HS40 machine, compared with 12 hours for -

the Gehan estimator and 24 hours for the log-rank and least
squares estimators (without variance estimation).

5. EXAMPLES

We first consider the well-known Mayo primary biliary cir-
rhosis (PBC) study (Fleming and Harrington 1991, app. D.1).
The data contain information about the survival time and prog-
nostic factors for 418 patients. Jin et al. (2003, 2006) fitted
the accelerated failure time mode! with five covariates—age,
log(albumin), log(bilirubin), edema, and log(protime)-—-using
the rank and least squares estimators. We fit the same model
using the proposed method with normal kernel function and

with bandwidths of on~ 5, on~ 17, and on1/?, where ¢ is
the sample standard derivation of logY, as well as the optimal -

bandwidths described in the previous section, denoted by ag? "
The resulis are given in Table 2. The parameter estimates as
well as the variance estimates are robust to the choice of band-
width. Qur parameter estimates are similar to the Gehan esti-
mates of Jin et al. (2003) and the least squares estimates of Jin
et al. (2006), whereas our standard error estimates tend to be
smaller, :

Tt is natural to estimate the conditionalAgrurvival function at
time ¢ given covariates X by e:xp{ﬂj{rl (ef2X1)}. We can esti-
mate the marginal survival function for a subgroup by averaging
the conditional survival function estimates. Figure 2 displays
the estimated survival curves for the PBC patients in two age
groups. The model-based estimates agree well with the Kaplan-
Meier estimates except at the right tails.

Our second example pertains to the Cardiovascular Health
Study (CHS), a major epidemiologic cohort study involving
5,888 men and women age 65 years and older from 4 U.S. field
centers (Fried et al. 1991). Primary endpoints of this study in-
clude myocardial infraction, stroke, and cardiovascular disease
mortality. The investigators are particularly interested in assess-
ing the effects of baseline risk factors on the time to the {irst oc-
currence of a primary endpoint among Cancasian subjects. The
total number of Caucasian subjects is 3,907, and about 27% of
them have reached the primary endpoints. A total of 10 baseline
covariates are considered: age, sex, an ordinary hypertension
scale, body mass index, systolic blood pressure, smoking status
(1, smoker; 0, nonsmoker), diabetes status (1, yes; 0, no), and 3
dummy variables comparing the 4 field centers. We fit the accel-
erated failure time model using the proposed method with the
normal kernel function and optimal bandwidth. Table 3 displays
the results of our analysis, along with those of the proportional
hazards regression. Using either model, significant effects can
be concluded due to age, sex, hypertension, systolic blood pres-
sure, smoking, diabetes, and field centers.

6. DISCUSSION

The proposed estimators are much easier to calculate than the

" existing ones. Indeed, the existing methods are computationally

intractable for large studies, such as the CHS study. A second
advantage of the proposed estimators is that they achieve the
semiparametric efficiency bound. (The existing estimators are
asymptotically efficient only under specific error distributions.)
Finally, the kernel-smoothed profile likelihood function allows
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Table 1. Summary statistics for the simulation stadies
Frror Proﬁle likelihood . Log-rank Least squareg
distribution n Bias SE SEE CP Bias SE Bias SE
N(O, 1) 100 B 007 234 239 © 950 .007 237 004 210
B .006 236 244 948 -—.004 242 001 295
200 B —.003 161 163 935 —.008 166 —.007 155
B 000 163 164 953 —.003 168 —.005 157
400 B 003 113 13 941 —.001] d16 .001 108
B —.003- A13 13 .949 —.007 121 -.006 1
Extreme-value’ 100 Bl 021 284 285 840 .004 233 008 283
B .023 285 281 953 .001 237 .003 .29
200 B 003 194 191 935 —.009 167 —.0035 200
B 013 203 .193 933 —.005 d71 —.006 213
400 Jixl .06 133 131 933 —.003, 119 —.002 152
B 009 128 131 950 .003 115 .004 144
Weibull(2, 1) 100 B 011 A33 133 953 016 332 019 .530
B .012 138 130 960 009 .303 —.005 528
200 B 001 084 .080 933 —.009 194 -.025 390
Ba 002 .089 081 935 002 197 —.004 383
400 81 001 053 050 931 —.002 21 —.011 284
B 003 0353 051 940 004 116 .011 275
Weibull(.5,1) 100 B 005 096 104 958 004 120 004 101
B .002 097 105 965 —.002 119 —.002 101
200 B —.003 067 .069 947 —.007 .086 --.004 .074
B —.001 071 070 955 —.003 088 —.002 075
400 B 001 .049 047 936 —.001 062 —.001 053
B2 001 047 047 961 001 060 .00% - 051
SN0, 1)+ 5N(0, 9 100 Bl 022 392 A22 .947 006 4438 .018 ATl
B —.004 417 433 940 —.026 A53 —.026 463
200 B .003 289 282 938 —.008 329 —-.003 341
Fir) .003 278 284 945 —-.012 317 —~.008 328
400 B .003 193 191 .941 003 226 002 235
B2 —.001 190 .194 942 —.007 221 —.007 234
95N(0, 1) + .05N(0, 9) 100 B .000 248 252 946 004 255 002 259
: B 006 249 255 946 —.002 259 —.002 265
200 B —.005 169 173 959 —.00% 175 —.008 78
B —.002 175 174 543 —.009 .189 —.010 187
400 B .002 118 120 953 .000 125 .001 125
B —.002 121 121 946 —.006 133 —.006 131

NOTE: SE is the standard error of the parameter estimater, SEE is the mean of the standard error estimator, and CP is the coverage probability of the 95% confidence interval. Each entry

is based on 1,000 replicates. :

one to perform likelihood ratio test and to conduct likelihood-

based model selection and variable selection.

For practical sample sizes, oversmoothing the kernel den-
sity function, as suggested by the asymptotic theory, may in-

duce bias, and the choice of the kernel function with zero mo-
menis may yield nonnegative values for the estimated hazard
function. The Gaussian kemel function and the bandwidth that
we suggest perform well under a wide variety of settings. The

- Table 2. Accelerated failure time regression for the Mayo PBC data

an =on"1/3 an =on~ 17 ay =on~1/? a,?f"
Parameter . Estimate SE Estimate SE Estimate SE Estimate SE
Age 0263 0061 (0287 0065 0299 0068 0286 0061
log(alburnin) —1.5138 5251 —1.6267 5284 —1.5761 5613 —1.6212 4761
log(bilirubin) 5959 0666 6272 0795 6500 .0815 6175 0669
Edema 9588 3075 8167 .2633 7943 2665 7985 3179
log(protime) 2.4228 7391 27811 BR34 2.9989 9242 2.4095 .8050

NOTE: Estimate denotes the parameter estimate, SE, the (estimated) standard error.
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Figure 2. Estimated survival functions for the PBC patients. The lower and upper solid curves are the Kap}an—Meier estimates for the patients
with ages > 50 and <50; the dotted curves are the corresponding model-based estimates.

Gaussian kernel function is a standard choice in nonparamet-
ric estimation due to its tractability. The optimal bandwidth for
density estimation may not be optimal for estimating its deriv-
atives. It would be worthwhile to develop data-adaptive strate-
gies for selecting the kernel function and thé bandwidth.

By providing computationally feasible and statistically ef-
ficient inference procedures, our work makes the accelerated
failure time model a more viable alternative to the propor-
tional hazards model. Goodness-of-fit tests as implemented in
S-PLUS revealed that the proportional hazards assumption is
questionable for the PBC and CHS data. It would be worth-
while to develop appropriate technigues to check the acceler-
ated failure time mode! and to determine which of the two mod-
els fits the data better. In principle, by including appropriate
time-dependent covariates, both the proportional hazards and
accelerated failure time models can fit any data reasonably well.

Table 3. Analysis of the CHS data under the proportional hazards and
accelerated failure time models

PH model AFT model

Parameter Estimate SE - Estimate SE
Age .0863 {0055 0636 0054
Gender 4002 0620 3460 20506
Hypertension 1573 0428 1080 0337
Body mass index .0099 0073 0040 0059
Systolic blood pressure 0078 0017 0063 0016
Smoking 4863 0976 .3306 0831
Diabetes 5271 0808 4365 0705
Center 2 versus center 1 —.0522 0870  —.0282 0667
Center 3 versus center [ 0446 0854 .0468 0659
Center 4 versus center 1 —.2108 .0933 —.1639 0743 |

NOTE: Estimate denotes the pacameter estimate; SE, the (¢stimated}) standard error.

It is sensible to fit both models to the same data, because they
provide different measures of regression effects.

In some applications, censoring arises when the assay can-
not detect values below or above certain thresholds. This is the

‘case with, for instance, the coronary artery calcification data.

For such censored data, the accelerated failure time model is
particularly appealing, because the concept of hazard is irrele-
vant in this context. When the assay cannot deiect values below
certain thresholds, the resulting data are left-censored. We can
turn left-censored data to right-censored data by regarding — 7
and —C as the response and censoring variables.

The accelerated failure time model and the proposed kernel-
smoothed profile likelihood approach can be extended to mui-
tivariate failure time data, which arise when each subject can

potentially experience several events or when the study sub-

jects are sampled in closters such that the failure times within
the same cluster are correlated. Extension to joint modeling for
event times and repeated measures is also possible. These ex-
tensions are currently under investigation.

APPENDIX: PROOFS OF ASYMPTOTIC RESULTS

Here we sketch the proofs of Theorems 1-3. The details are pro-
vided in the supplementary technical report.

Proof of Theorem 1

In view of the proof of theorem 5.7 of van der Vaart (1998), it suf-
fices to show that SUPgen [E2(8) —1(B)| —>a5 0 as n — oo and that
B is the unique maximizer of /{8). The uniform convergence follows
from the following results: :

LZAJ_K(R-;(?—S)_dP(A:LR(B)ss)‘ as o
=1 ’

na, — - ds

sup
BeB.s

i
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and

o (Ri(B)—5)/an as
f K@)ydu —P(R(B) > s)| —0.

sup
,BEB,S i J,= 1 —0Gd

We cdn verify these results be appealing to lemma 2.4 of Schuster

(1969) and theorem 2.4.3 of van der Vaart and Wellner (1996). To show

that B is the unique maximizer of I(8), we define

'_ Mgt dp(A =1, R(B) <5)/ds
A(r,ﬁ)*f P(R(B) > 5) ds

—CO

Note that A (1; Bo) = Ag(#) and E[A(fOY FTX6Y g5, By =P(a = D).
Thus if # maximizes {{#), then

¥
E[AﬂTX(Y} + Alogk( f ATXW gy ,B)
0

¥
([

Y
> E[AﬂgX(Y) + Alogp (f HoX(s) ds)
: [

S
~ A ( f BIXG) ds)}
0 .

where A(t; B) = 3A(t; B)/3:t. Tt follows from the nommegativity of the
Kullback-Leibler information that

Y
exp{AﬁTX(Y) + Alog}.(f X ds; ,B)
0

([ )

’ Y
- exp{/_\ BLX(¥) + Aloghg ( f BOX ds)
0

Y
_ Ao( f SAIX(s) ds)}
-

with probability 1. We choose A =0 ard ¥ = 7. The resulting equa-
tion subtracted from the equation obtained from choosing A = 1

and integrating from ¥ = y to ¥ = 7 yields A(foy eﬁTX(S) ds; B) =
Ag( f@' e‘BgX(s) ds). Thus there exists an increasing and differentiable
function G such that fOT BTXG} gy = G(foT LX) ds). Differenti-
ating both sides with respectto 7 yiel‘ds (8— ,B‘O)TX(T) =log G’ (e%).
It then follows from condition (C.2) that 8 = B, and thus A = Ay.
Proof of Theorem 2

Let P and Pr denote the probability measure and empirical mea-
sure. Because 313 (8,,)/38 = 0, we have .

21, (7, X5 En) _A 23, (Y, X; En)jl
22n (Y. X B) 25 (Y. X; B,)

where, if we define ¥ (y, x; 8) = log [ exp{fTx(s)} ds and D (y, x;
By=0ov¢(y,x; /88, then

0= IF’H_[AX(Y) ~ARM@ y+A

R(B) ¥ (y.x: ﬁ))

tn

ey % B) =Py {AK(I)(

a;

Py, % ﬁ))}
an '

y ROBY -3y, % 8) }

23003 %; B) = Pn{a K(R(ﬁ)
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oo IRO@) 9D x p)
gsn(y,x,ﬂ)—n%{ - :

K(R(ﬁ) A S ﬁ))},

2

and
(R(BY=¥(y.%:8))/an
84n(y=X;.3):Pn{f K(.s)ds}.
-0

We denote the'expectations of gr,(v,x; By k=1, ...

x; B).
Write Gy = /n(Pr — p), R = R(E,), and RW =RD@,. 1

4) s gy,

- addition, let (¥, A, X) be an independent copy of (¥, A, X), and Jet
_ R{ﬁ) and R(D(ﬂ‘) be the corresponding copies of R(B) and R(l)(ﬁ}

Rigo), RYY = RW(Bp), & = R(B,,), ena
R =R{(E,). Then we can express the score equation as

g X B X m]
82n(Y,X§13n) g4ﬁ(Y:X,;ﬁn)

1) BBy RO RO
ARWEER =R

Furthermore, write RD

0==05, {AX(Y) — AR L A

]
L gm (¥, X; B,)

222(7.X; B)g20( 8)

- RW_ RUK(R R):”

iy &n

AM__—
L e (VX0 B
ST K () ds g0P KB } }
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e e Atk (ERyg (7% 8,
{ 27 )

+nE [AX(Y) —ARW 4 A

7. X, :
330( .Bn :I (A1)
g4o(Y X; B,

By evaluating the limits of gz, (k= 1,...,4) and applying the-
orem 2.11.23 of van der Vaart and Wellner (1996) we can simplify

(A.]) as
0=Gyl3(Y, A, X) + Vi E[AX(Y) ARWE,)

A 2 X:B,)
g20(Y, X5 B,)

_ A B X En)]
210V, X 8,0 1

where

IE(Y,A,X)

5 ) .
—Ep 3 g [X(Y)JRO =§ogf0 ePoXW) gy K = 1]} dMx(s)

~ ~ B —~ -
”I:RU)IRO = log/ eﬁgx(”) du, A = l:l}
’ 4]
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and Mx(s) = AI(Y <5) — I(¥ > 5) dA(fJ BOXE gy,
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When X(-) is time-independent, 1% is easily recognized as the ef-

ficient score function for Bg given by Bickel, Klaassen, Ritov, and .

Wellner (1993, p. 149). For generat X(-}, by expanding IE, we ob-
fain :

Myl ePoX O a5y
Ao (fGY eﬁgx(s) ds)

Y Y
—Ag ([ X4 ds) } f X(s)eﬁgx(s) ds
o o
Y ' Y i -
+ AS( f HoX) ds) = f s( [ (PIXL) ds)
0 0 0

% A ( f ’ B5X() ds)eﬁgx(‘) dr,
W0

I;E(Y, AX) = AX(Y) + [A

Sty = —Ey 3 gX(DIRy =logt, A=1]

| rE?,E’i[R{())mD:logt,A‘:l]kf)(r)z/kg(t).
It is easy to verify that I} is the score along a submodel passing
(Bo, Ap) with tangent direction [ S(t) dAg(r) for Ag. By the ker-
nel approximation and the zero-moments condition of K (), we cb-
tain

g1, X Bo) _ , s30 X ﬁo)]
80(%. X: Bp) 40(Y. X5 Bo)
=op(L).

Thus the asymptotic normality and efficiency of Ji(By — Bo) hold if
we can show that

d o)
Celaxw) —ar{’+A
aﬁE[ (¥) ARy +

JnE [AX(Y) — AR + A

g0, X; o) _ , g0h X ﬂo):|
g20(¥, X Bo) gao(¥, X: Bo)

=—Elf3 (7, AP <0

Suppose that E{l; (Y, A, X)®2] is singutar. Then there exists a con-
stant vector & such that oTE [I’E ¥, A, X)®2)g = 0. Thus aTIE ==(al-
most surely. We multiply this equation by 4 exp{—Agp( jg eﬁgx(”)du)}
and integrate y from O te r. Then I czTX(u)e‘ggX(“) du =
x( fé eﬁgx(”‘}d u) for some differentiabie function . We differentiate
both sides with respect to ¢ = T to obtain aTX(T) =
)("(fOT HoX00) duy = y'(e). By condition {C.2), & = 0; therefore, IR
is an asymptotically efficient estimator of Bo-

Proof of Theorem 3

Define Sg,{t) = P(E@ = 1). It follows from the proofs for the as-

ymptotic properties of 8, that

A

o [ _Azm@ds}
; — 00 SRU(S)
log¢ Ey x %A frya ()] ]
— ol T(R, d
G"Um SRR ad

log?
+/n {

o AR
EY, ’X[AR[) fﬁalﬂ‘ﬁél)(s)]

.SR(] (s}

—00

~ —~ T R
By x 3Kz Fp A RIBRG 7% 50 )] }d
A

Sry (3)2
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x (B, — Bo)
- logt By 5 glA fyz )]
[t Syt in s e d .
+Jﬁf_m S s +op(1)
On noting that
logt Ev = A5 % ()]
/ PASIMRIAD] 45 _ a0,
—%0 Sgols)

wie reach the conclasion of Theorem 3.

[Received August 2006. Revised July 2007.]
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